機(jī)器學(xué)習(xí)算法已經(jīng)被廣泛應(yīng)用于自動駕駛各種解決方案,電控單元中的傳感器數(shù)據(jù)處理大大提高了機(jī)器學(xué)習(xí)的利用率,也有一些潛在的應(yīng)用,比如利用不同外部和內(nèi)部的傳感器的數(shù)據(jù)融合(如激光雷達(dá)、雷達(dá)、攝像頭或物聯(lián)網(wǎng)),評估駕駛員狀況或為駕駛場景分類等。在KDnuggets網(wǎng)站發(fā)表的一篇文章中,作者Savaram Ravindra將自動駕駛中機(jī)器學(xué)習(xí)算法主要分為四類,即決策矩陣算法、聚類算法、模式識別算法和回歸算法。我們跟他一起看看,這些算法都是怎樣應(yīng)用的。
算法概覽
我們先設(shè)想這樣一個自動駕駛場景——汽車的信息娛樂系統(tǒng)接收傳感器數(shù)據(jù)融合系統(tǒng)的信息,如果系統(tǒng)發(fā)現(xiàn)司機(jī)身體有恙,會指導(dǎo)無人車開往附近的醫(yī)院。
這項應(yīng)用以機(jī)器學(xué)習(xí)為基礎(chǔ),能識別司機(jī)的語音、行為,進(jìn)行語言翻譯等。所有這些算法可以分為兩類:監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí),二者的區(qū)別在它們學(xué)習(xí)的方法。
監(jiān)督學(xué)習(xí)算法利用訓(xùn)練數(shù)據(jù)集學(xué)習(xí),并會堅持學(xué)到達(dá)到所要求的置信度(誤差的最小概率)。監(jiān)督學(xué)習(xí)算法可分為回歸、分類和異常檢測或維度縮減問題。
無監(jiān)督學(xué)習(xí)算法會在可用數(shù)據(jù)中獲取價值。這意味著算法能找到數(shù)據(jù)的內(nèi)部聯(lián)系、找到模式,或者根據(jù)數(shù)據(jù)間的相似程度將數(shù)據(jù)集劃分出子集。無監(jiān)督算法可以被粗略分類為關(guān)聯(lián)規(guī)則學(xué)習(xí)和聚類。
強(qiáng)化學(xué)習(xí)算法是另一類機(jī)器學(xué)習(xí)算法,這種學(xué)習(xí)方法介于監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)之間。監(jiān)督學(xué)習(xí)會給每個訓(xùn)練樣例目標(biāo)標(biāo)簽,無監(jiān)督學(xué)習(xí)從來不會設(shè)立標(biāo)簽——而強(qiáng)化學(xué)習(xí)就是它們的平衡點,它有時間延遲的稀疏標(biāo)簽——也就是未來的獎勵。每個agent會根據(jù)環(huán)境獎勵學(xué)習(xí)自身行為。了解算法的優(yōu)點和局限性,并開發(fā)高效的學(xué)習(xí)算法是強(qiáng)化學(xué)習(xí)的目標(biāo)。
在自動駕駛汽車上,機(jī)器學(xué)習(xí)算法的主要任務(wù)之一是持續(xù)感應(yīng)周圍環(huán)境,并預(yù)測可能出現(xiàn)的變化。
我們不妨分成四個子任務(wù):
檢測對象
物體識別及分類
物體定位
運(yùn)動預(yù)測
機(jī)器學(xué)習(xí)算法也可以被寬松地分為四類:
決策矩陣算法
聚類算法
模式識別算法
回歸算法
機(jī)器學(xué)習(xí)算法和任務(wù)分類并不是一一對應(yīng)的,比如說,回歸算法既可以用于物體定位,也可以用于對象檢測和運(yùn)動預(yù)測。
決策矩陣算法
決策矩陣算法能系統(tǒng)分析、識別和評估一組信息集和值之間關(guān)系的表現(xiàn),這些算法主要用戶決策。車輛的制動或轉(zhuǎn)向是有依據(jù)的,它依賴算法對下一個運(yùn)動的物體的識別、分類、預(yù)測的置信水平。決策矩陣算法是由獨立訓(xùn)練的各種決策模型組合起來的模型,某種程度上說,這些預(yù)測組合在一起構(gòu)成整體的預(yù)測,同時降低決策的錯誤率。AdaBoosting是最常用的算法。
AdaBoost
Adaptive Boosting算法也可以簡稱為AdaBoost,它是多種學(xué)習(xí)算法的結(jié)合,可應(yīng)用于回歸和分類問題。與其他機(jī)器學(xué)習(xí)算法相比,它克服了過擬合問題,并且對異常值和噪聲數(shù)據(jù)非常敏感。AdaBoost需要經(jīng)過多次迭代才能創(chuàng)造出強(qiáng)學(xué)習(xí)器,它具有自適應(yīng)性。學(xué)習(xí)器將重點關(guān)注被分類錯誤的樣本,最后再通過加權(quán)將弱學(xué)習(xí)器組合成強(qiáng)學(xué)習(xí)器。
AdaBoost幫助弱閾值分類器提升為強(qiáng)分類器。上面的圖像描繪了如何在一個可以理解性代碼的單個文件中實現(xiàn)AdaBoost算法。該函數(shù)包含一個弱分類器和boosting組件。
弱分類器嘗試在數(shù)據(jù)維數(shù)中找到理想閾值,并將數(shù)據(jù)分為2類。分類器迭代時調(diào)用數(shù)據(jù),并在每個分類步驟后,改變分類樣本的權(quán)重。
因此,它實際創(chuàng)建了級聯(lián)的弱分類器,但性能像強(qiáng)分類器一樣好。
聚類算法
有時,系統(tǒng)獲取的圖像不清楚,難以定位和檢測對象,分類算法有可能丟失對象。在這種情況下,它們無法對問題分類并將其報告給系統(tǒng)。造成這種現(xiàn)象可能的原因包括不連續(xù)數(shù)據(jù)、極少的數(shù)據(jù)點或低分辨率圖像。K-means是一種常見的聚類算法。
K-means
K-means是著名的聚類算法,它從數(shù)據(jù)對象中選擇任意k個對象作為初始聚類中心,再根據(jù)每個聚類對象的均值(中心對象)計算出每個對象與中心對象的距離,然后根據(jù)最小距離重新劃分對象。最后重新計算調(diào)整后的聚類的均值。
下圖形象描述了K-means算法。其中,(a)表示原始數(shù)據(jù)集,(b)表示隨機(jī)初始聚類中心,(c-f)表示運(yùn)行2次k-means迭代演示。
模式識別算法(分類)
通過高級駕駛輔助系統(tǒng)(ADAS)中的傳感器獲得的圖像由各種環(huán)境數(shù)據(jù)組成,圖像過濾可以用來決定物體分類樣例,排除無關(guān)的數(shù)據(jù)點。在對物體分類前,模式識別是一項重要步驟,這種算法被定義為數(shù)據(jù)簡化算法。數(shù)據(jù)簡化算法可以減少數(shù)據(jù)集的邊緣和折線(擬合線段)。
PCA(原理分量分析)和HOG(定向梯度直方圖),支持向量機(jī)(Support Vector Machines,SVM)是ADAS中常用的識別算法。我們也經(jīng)常用到K最近鄰(KNN,K-NearestNeighbor)分類算法和貝葉斯決策規(guī)則。
支持向量機(jī)(SVM)
SVM依賴于定義決策邊界的決策層概念。決策平面分隔由不同的類成員組成的對象集。下面是一個示意圖。在這里,物體要么屬于紅色類要么綠色類,分隔線將彼此分隔開。落在左邊的新物體會被標(biāo)記為紅色,落在右邊就被標(biāo)記為綠色。
回歸算法
這種算法的專長是預(yù)測事件。回歸分析會對兩個或更多變量之間的關(guān)聯(lián)性進(jìn)行評估,并對不同規(guī)模上的變量效果進(jìn)行對照。回歸算法通常由三種度量標(biāo)準(zhǔn)驅(qū)動:
回歸線的形狀
因變量的類型
因變量的數(shù)量
在無人車的驅(qū)動和定位方面,圖像在ADAS系統(tǒng)中扮演著關(guān)鍵角色。對于任何算法來說,最大的挑戰(zhàn)都是如何開發(fā)一種用于進(jìn)行特征選取和預(yù)測的、基于圖像的模型。
回歸算法利用環(huán)境的可重復(fù)性來創(chuàng)造一個概率模型,這個模型揭示了圖像中給定物體位置與該圖像本身間的關(guān)系。通過圖形采樣,此概率模型能夠提供迅速的在線檢測,同時也可以在線下進(jìn)行學(xué)習(xí)。模型還可以在不需要大量人類建模的前提下被進(jìn)一步擴(kuò)展到其他物體上。算法會將某一物體的位置以一種在線狀態(tài)下的輸出和一種對物體存在的信任而返回。
回歸算法同樣可以被應(yīng)用到短期預(yù)測和長期學(xué)習(xí)中,在自動駕駛上,則尤其多用于決策森林回歸、神經(jīng)網(wǎng)絡(luò)回歸以及貝葉斯回歸。
回歸神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)可以被用在回歸、分類或非監(jiān)督學(xué)習(xí)上。它們將未標(biāo)記的數(shù)據(jù)分組并歸類,或者監(jiān)督訓(xùn)練后預(yù)測連續(xù)值。神經(jīng)網(wǎng)絡(luò)的最后一層通常通過邏輯回歸將連續(xù)值變?yōu)樽兞?或1。
在上面的圖表中,x代表輸入,特征從網(wǎng)絡(luò)中的前一層傳遞到下一層。許多x將輸入到最后一個隱藏層的每個節(jié)點,并且每一個x將乘以相關(guān)權(quán)重w。乘積之和將被移動到一個激活函數(shù)中,在實際應(yīng)用中我們經(jīng)常用到ReLu激活函數(shù)。它不像Sigmoid函數(shù)那樣在處理淺層梯度問題時容易飽和。
-
機(jī)器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8492瀏覽量
134087 -
自動駕駛
+關(guān)注
關(guān)注
788文章
14196瀏覽量
169515
原文標(biāo)題:自動駕駛中常用的四類機(jī)器學(xué)習(xí)算法
文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
FPGA在自動駕駛領(lǐng)域有哪些應(yīng)用?
FPGA在自動駕駛領(lǐng)域有哪些優(yōu)勢?
自動駕駛真的會來嗎?
自動駕駛的到來
AI/自動駕駛領(lǐng)域的巔峰會議—國際AI自動駕駛高峰論壇
無人駕駛與自動駕駛的差別性
硅谷組建團(tuán)隊、L3產(chǎn)品落地,想法多多的騰訊自動駕駛
LG電子布局機(jī)器人和自動駕駛領(lǐng)域
UWB主動定位系統(tǒng)在自動駕駛中的應(yīng)用實踐
自動駕駛汽車的處理能力怎么樣?
細(xì)數(shù)幾種常見的自動駕駛中的機(jī)器學(xué)習(xí)算法
強(qiáng)化學(xué)習(xí)在自動駕駛的應(yīng)用

探討深度學(xué)習(xí)在自動駕駛中的應(yīng)用
自動駕駛中的機(jī)器學(xué)習(xí)

評論