女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何有效地檢測Sic MOSFETn方案

454398 ? 來源:電子技術設計 ? 作者:Giovanni Di Maria ? 2021-01-06 16:46 ? 次閱讀

隨著寬禁帶半導體技術的日益普及,需要在高溫和苛刻的電流循環條件下,對二極管操作進行各種耐久性測試,以評估其性能。毫無疑問,功率電子器件作為基本元器件,將在未來幾年中持續發展。而新型碳化硅(SiC)半導體材料更是不負眾望,它比傳統硅材料導熱性更佳、開關速度更高,而且可以使器件尺寸做到更小。因此,碳化硅開關也成為設計人員的新寵。

碳化硅二極管主要為肖特基二極管。第一款商用碳化硅肖特基二極管十多年前就已推出。從那時起,它就開始進入電源系統。二極管已經升級為碳化硅開關,如JFET、BJT和MOSFET。目前市場上已經可以提供擊穿電壓為600-1700 V、且額定電流為1 A-60 A的碳化硅開關。本文的重點是如何有效地檢測Sic MOSFET。

o4YBAF_1d4KAOcggAAIZ4k5-3FY675.png

圖1: 首款商用SiC MOSEFT-CMF20120D

碳化硅二極管

最初的二極管非常簡單,但隨著技術的發展,逐漸出現了升級的JFET、MOSFET和雙極晶體管。碳化硅肖特基二極管優勢明顯,它具有高開關性能、高效率和高功率密度等特性,而且系統成本較低。這些二極管具有零反向恢復時間、低正向壓降、電流穩定性、高抗浪涌電壓能力和正溫度系數。

新型二極管適合各種應用中的功率變換器,包括光伏太陽能逆變器、電動車(EV)充電器、電源和汽車應用。與傳統硅材料相比,新型二極管具有更低的漏電流和更高的摻雜濃度。硅材料具有一個特性,就是隨著溫度的升高,其直接表征會發生很大變化。而碳化硅是一種非常堅固且可靠的材料,不過碳化硅仍局限于小尺寸應用。

檢測碳化硅二極管

本文要檢測的碳化硅二極管為羅姆半導體的SCS205KG型號,它是一種SiC肖特基勢壘二極管(圖2)。其主要特性如下:

˙反向電壓Vr:1200 V;

˙連續正向電流If:5 A(+ 150℃時);

˙浪涌非重復正向電流:23 A(PW = 10ms正弦曲線,Tj = + 25℃;

˙浪涌非重復正向電流:17 A(PW = 10ms正弦曲線,Tj= + 150℃);

˙浪涌非重復正向電流:80 A(PW = 10μs方波,Tj= + 25℃);

˙總功耗:88 W;

˙結溫:+ 175℃;

˙TO-220AC封裝。

o4YBAF_1d4-AZXa5AAD7a69wnds196.png

圖2: 羅姆SCS205KG SiC二極管

羅姆半導體公司的SCS205KG SiC二極管性能穩固,恢復時間短且切換速度快。其官方SPICE模型允許用戶在任何條件下對器件進行仿真

正向電壓

首先,我們測量SiC二極管的正向電壓。圖3所示為一個簡單的測試電路及其三維示意圖,以及在不同的工作溫度下,器件數據手冊中有關正向電壓的相關數據摘錄。

pIYBAF_1d56AO5nPAAPjmEOU46M556.png

圖3:SiC二極管的正向電壓測試原理圖

測試接線圖中,肖特基SCS205KG SiC二極管與一個阻值約6.7歐姆的電阻串聯,以允許5 A的電流通過電路。其電源電壓設置為36V。為了更好地優化功耗和散熱性能,我們使用了十個并聯的67歐姆電阻,以模擬單個6.7 ohm電阻。每個電阻的功率必須至少為20W。肖特基二極管SCS205KG的數據手冊中明確了在各種工作溫度下器件兩端的電壓值:

If=5A, Tj=+25℃: 1.4 V;

If=5A, Tj=+150℃: 1.8 V;

If=5A, Tj=+175℃: 1.9 V.

這些數據說明了二極管兩端的電壓高度依賴于溫度。因此,設計人員必須盡可能地抑制這種電壓波動,以免影響最終的系統性能。我們使用如下的SPICE指令,在0℃至200℃的溫度范圍內進行直流掃描仿真,以測量功率二極管兩端的電壓:

.DC temp 0 200 25

仿真結果返回了在不同溫度下二極管上的電壓值,這些數據完全符合器件數據手冊中提供的指標。其中紅色框中包含了文檔中報告的測試溫度。

o4YBAF_1d6uAYhB_AAC-T7T4Uno208.png

表1:溫度與測得電壓值.

如圖4所示,隨著溫度的變化,綠色曲線表示二極管陽極上固定的36 V電壓,黃色曲線表示陰極上的電壓變化。其電位差構成了“正向電壓”。由于陽極和陰極的電壓之間存在代數差,從圖中可以觀察到器件上存在電位差。該測試必須在幾秒鐘內完成。

pIYBAF_1d76ABzDqAAPfZ4EuQXk302.png

圖4:仿真在時域中測量SiC二極管的正向電壓

電容電抗

其次,我們測量SiC二極管的電容電抗。圖5所示為簡單的測試電路及其三維示意圖。

pIYBAF_1d8yAbMsvAAGqQx_t7E0089.png

圖5:SiC二極管電容電抗測試示意圖

在電路圖中,肖特基SiC二極管SCS205KG與一個阻值低至約0.1歐姆的電阻串聯。另有一個阻值很高的第二電阻與二極管并聯。電源電壓是設置為1 V的正弦波電源。我們可以執行如下的SPICE指令進行AC仿真,在200 MHz至2 MHz頻率范圍內,對功率二極管的電容電抗進行測量:

.AC lin 1000 0.2Meg 2Meg

仿真結果(參見圖6)顯示出在正弦波不同頻率下的不同電容電抗。

pIYBAF_1d_iAFNzvAAFsmujPep4575.png

圖6:該仿真在頻域中測量SiC二極管的電容電抗。二極管表現為一個小型電容器,容值取決于所承受的頻率。

如圖7所示,我們采用如下公式測量二極管的電容電抗。它發生在頻域中的AC。

IM(V(n002)/I(R1))

o4YBAF_1eBCAVjWnAAAXKsR4H00757.png圖7:二極管電容電抗的計算公式

二極管可以用電容器代替,以便用真實器件來執行另一個仿真。

反向電流

第三個要測量的是SiC二極管的反向電流。圖8所示為一個簡單的測試電路及其三維示意圖,以及在不同的工作溫度下,器件數據手冊中有關反向電流的相關數據摘錄。

o4YBAF_1eB-AUa6wAAMQelGmIH0989.png

圖8:SiC二極管反向電流的測試示意圖

電路圖(圖8)中,肖特基SiC二極管SCS205KG與一個阻值低至約0.1歐姆的電阻串聯。電源電壓是設置為1200 V的正弦波電源。二極管以反向模式連接。我們采用如下SPICE指令,執行DC仿真(掃頻),測試在+ 20℃至+ 200℃的溫度范圍內流過二極管的反向電流。

.DC TEMP 20 200 1

如圖9所示,隨溫度變化,二極管上只有很少的反向電流經過。

o4YBAF_1eDCAerz8AAGDuxG5b7A964.png

圖9:該仿真測試了SiC二極管兩端的反向電流在溫度域的變化情況

圖10(電壓V與電流I)顯示了在+ 25℃的恒定溫度下,當施加到二極管的電壓在0 V至1200 V之間變化時,反向電流的變化曲線。

o4YBAF_1eD6AKZNSAAFbkqxDxCA312.png

圖10:在25℃溫度下,反向電流與施加到二極管上的電壓關系圖。

結論

碳化硅二極管具有非常快速的恢復時間,這可提高開關速率,并減小磁性元件和其它無源元件的尺寸,從而使最終產品具有更高的功率密度。對于電源開關應用,碳化硅二極管在效率和熱性能方面也具備顯著的優勢。這種器件可以在更高的溫度下運行,而溫度是改變電子器件工作條件的重要因素。如果采用真正的SiC器件進行真實測試與仿真會更加有趣,這樣可以評估仿真器以及SPICE模型的功效和實用性。
編輯:hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    SiC MOSFET 開關模塊RC緩沖吸收電路的參數優化設計

    0? 引言SiC-MOSFET 開關模塊(簡稱“SiC 模塊”)由于其高開關速度、高耐壓、低損耗的特點特別適合于高頻、大功率的應用場合。相比 Si-IGBT, SiC-MOSFET 開關速度更快
    發表于 04-23 11:25

    碳化硅(SiC)功率模塊方案對工商業儲能變流器PCS市場格局的重構

    碳化硅(SiC)模塊方案(如BMF240R12E2G3)對工商業儲能變流器PCS市場格局產生顛覆性的重構: 2025年, SiC模塊方案(如BMF240R12E2G3) 憑借效率、成本
    的頭像 發表于 04-13 19:42 ?157次閱讀
    碳化硅(<b class='flag-5'>SiC</b>)功率模塊<b class='flag-5'>方案</b>對工商業儲能變流器PCS市場格局的重構

    麥科信光隔離探頭在碳化硅(SiC)MOSFET動態測試中的應用

    測試結果的準確性。 采用麥科信光隔離探頭MOIP200P的SiC MOSFET動態測試結果 客戶反饋 在SiC MOSFET的納秒級開關動態測試中,探頭180dB的共模抑制比有效抑制了高頻EMI干擾
    發表于 04-08 16:00

    有效抑制SiC外延片掉落物缺陷生成的方法

    影響外延片質量和器件性能的關鍵因素。這些缺陷不僅會降低外延片的良品率,還可能對后續器件的可靠性產生嚴重影響。因此,有效抑制SiC外延片掉落物缺陷的生成,對于提升Si
    的頭像 發表于 02-10 09:35 ?401次閱讀
    <b class='flag-5'>有效</b>抑制<b class='flag-5'>SiC</b>外延片掉落物缺陷生成的方法

    提高SiC外延生長速率和品質的方法

    SiC外延設備的復雜性主要體現在反應室設計、加熱系統和旋轉系統等關鍵部件的精確控制上。在SiC外延生長過程中,晶型夾雜和缺陷問題頻發,嚴重影響外延膜的質量。如何在提高外延生長速率和品質的同時,有效避免這些問題的產生,可以從以下幾
    的頭像 發表于 02-06 10:10 ?562次閱讀

    如何有效地提高傳感器的測試精度

    問題描述 如何有效地提高傳感器的測試精度是行業的發展趨勢;近來,對傳感器進行實驗測試過程中發現結果存在明顯的工頻干擾,信號中夾雜有明顯噪音,具體頻率為50hz,因此,近來以解決實際問題為出發點
    的頭像 發表于 01-24 10:55 ?792次閱讀
    如何<b class='flag-5'>有效地</b>提高傳感器的測試精度

    如何有效地安裝孔隙水壓力計

    孔隙水壓力計作為一種重要的監測工具,廣泛應用于多種工程場景中,包括士方填筑、混凝土澆筑、測壓管式埋設等。下面,峟思工程儀器將和大家詳細探討在這些具體應用場景中,如何有效地安裝孔隙水壓力計。在士方填筑
    的頭像 發表于 01-21 17:02 ?352次閱讀
    如何<b class='flag-5'>有效地</b>安裝孔隙水壓力計

    提高SiC晶圓平整度的方法

    提高SiC(碳化硅)晶圓平整度是半導體制造中的一個重要環節,以下是一些提高SiC晶圓平整度的方法: 一、測量與分析 平整度檢測:首先,使用高精度的測量設備對SiC晶圓的平整度進行
    的頭像 發表于 12-16 09:21 ?586次閱讀
    提高<b class='flag-5'>SiC</b>晶圓平整度的方法

    安森美全SiC模組加速滲透

    隨著清潔能源的快速增長,作為光伏系統心臟的太陽能逆變器儼然已經成為能源革命浪潮中的超級賽道。高效的光伏系統,離不開功率器件。全IGBT方案、混合SiC方案和全SiC
    的頭像 發表于 11-30 16:19 ?986次閱讀
    安森美全<b class='flag-5'>SiC</b>模組加速滲透

    應用筆記 | SiC模塊并聯驅動振蕩的抑制方法

    SiC MOSFET與傳統Si器件相比,具有高電壓、大電流、高速驅動、低損耗、高溫穩定等諸多優點,是新一代器件。近年來,利用這些優異特性,作為向大功率發展的電動汽車 (EV) 的牽引逆變器電路,并聯
    發表于 11-27 14:23

    防雷檢測的技術方案及行業應用

    防雷檢測是確保建筑物、通信設備、能源系統等免受雷電損害的關鍵環節。良好的防雷檢測不僅能有效減少雷電帶來的損壞和事故,還能確保系統在雷電環境中的可靠性。 地凱科技 將詳細闡述防雷檢測的技
    的頭像 發表于 10-25 11:16 ?548次閱讀
    防雷<b class='flag-5'>檢測</b>的技術<b class='flag-5'>方案</b>及行業應用

    SiC MOSFET和SiC SBD的區別

    SiC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導體器件,它們在電力電子領域具有廣泛的應用。盡管它們都屬于
    的頭像 發表于 09-10 15:19 ?3240次閱讀

    恩智浦和采埃孚合作開發基于SiC的電動汽車牽引逆變器解決方案

    恩智浦半導體宣布與電動汽車領域領先企業采埃孚股份公司(ZF Friedrichshafen AG)合作下一代基于SiC的電動汽車(EV)牽引逆變器解決方案。解決方案采用恩智浦先進的GD316x高壓(HV)隔離柵極驅動器,旨在加速
    的頭像 發表于 08-27 09:48 ?1707次閱讀

    源漏嵌入SiC應變技術簡介

    源漏區嵌入SiC 應變技術被廣泛用于提高90nm 及以下工藝制程 NMOS 的速度,它是通過外延生長技術在源漏嵌入 SiC 應變材料,利用硅和碳晶格常數不同,從而對溝道和襯底硅產生應力,改變硅導帶的能帶結構,從而降低電子的電導有效
    的頭像 發表于 07-25 10:30 ?1344次閱讀
    源漏嵌入<b class='flag-5'>SiC</b>應變技術簡介

    光伏儲能BUCK-BOOST中SiC MOSFET方案可使用BTD25350

    光伏儲能BUCK-BOOST中SiC MOSFET方案可使用BTD25350
    的頭像 發表于 06-11 09:35 ?687次閱讀
    光伏儲能BUCK-BOOST中<b class='flag-5'>SiC</b> MOSFET<b class='flag-5'>方案</b>可使用BTD25350