女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

全面分析MOSFET狀況

0GkM_KIA ? 來源:djl ? 作者:KIA半導體 ? 2019-08-12 09:34 ? 次閱讀

MOSFET,金屬-氧化物半導體場效應晶體管,簡稱金氧半場效晶體管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一種可以廣泛使用在模擬電路與數字電路的場效晶體管(field-effect transistor)。

MOSFET依照其“通道”(工作載流子)的極性不同,可分為“N型”與“P型” 的兩種類型,通常又稱為NMOSFET與PMOSFET,其他簡稱尚包括NMOS、PMOS等。

本文主要涉及到的內容有:

(1)半導體物理最基本的概念:載流子、溝道、耗盡層、反型層;

(2)MOSFET核心部分;

(3)MOSFET工作基本原理;

(4)MOSFET工作特性分析;

(5)MOSFET命名與符號理解;

(6)MOSFET主要參數。

(一)基本概念-半導體

金屬材料可以導電,絕緣材料不導電,那怎么樣實現一個東西既能夠導電又能夠不導電?那就是半導體。MOSFET作為一種半導體器件,我們需要它實現的功能按最簡單話來說就是既能夠實現電路的通,又能夠實現電路的斷。

放在數字電路里,這就是實現0和1的方式,在功率電路里,這就是實現PWM轉換器工作的基本手段,這都是后話。

如何實現通?當材料內部具有自由移動的電子(負電荷)或者空穴(正電荷)的時候就是導通的(假如說電子或空穴被晶格束縛,那么同樣無法導電),存在載流子的時候材料是導通的。如何實現斷?那就是將一定區域內的自由載流子去除,材料就不能夠導電了,從而達到阻斷電流的作用。

我們目前用得最多的半導體材料,比如硅(Si),是Ⅳ族元素,本身最外層電子為4,可以形成穩定的晶格結構,因此它本身是無法導電的,如下圖所示,所有電子和原子核都被牢牢束縛在穩定的結構中出不來,所以沒有自由移動的電荷。

全面分析MOSFET狀況

而當材料中摻雜了其他元素,比如說Ⅲ族或者Ⅴ族元素,甚至其他元素,取代了晶格中的位置。摻雜Ⅴ族元素,結構中就有了除了最外層4個以外的一個電子(即多數載流子為電子),摻雜了Ⅲ族元素,結構中就缺了一個電子構成穩定結構,即形成一個空穴(即多數載流子為空穴)。

如下圖所示,左圖為摻雜Ⅴ族元素的示意圖,Ⅴ族元素最外層有五個電子,四個電子參與形成共價鍵,因此還剩余一個電子;右圖為摻雜Ⅲ族元素的示意圖,Ⅲ族元素最外層有三個電子,只有三個電子用于形成共價鍵,因此留下一個空穴。為了方便,可以直接將電子和空穴理解成負電荷和正電荷。

全面分析MOSFET狀況

由于帶電粒子在電場中會發生移動,假如在電場的作用下,使得結構中的電子和空穴都跑掉了,那么這個區域不存在自由移動的載流子,因此區域就不再導電,這樣的區域稱為耗盡區(載流子被電場耗盡)。

牢牢記住,耗盡區內不存在自由移動的載流子,因此是斷開狀態。MOS的核心原理就是利用電場的作用,使得一定區域時而導電時而斷開。

(二)MOSFET 核心部分

1、MOSFET是什么?為什么叫MOSFET?

MOSFET全稱Metal-Oxide-Semiconductor Field-Effect Transistor。即金屬氧化物半導體場效應晶體管。名字一長串,一看就記不住。相信大家跟我應該是一樣的感覺。

但這個名字實際上是跟其結構息息相關,只要理解它,記住并不是難事。為什么這么說,我們看下圖中的核心結構(這不是MOSFET,僅僅是取其中局部進行講解)。從上往下依次是金屬、氧化層、摻雜的半導體材料,連起來不就是Metal-Oxide-Semiconductor了嗎,有其名必有其因。

全面分析MOSFET狀況

2、那何為Field-Effect Transistor?

這里的Field自然指電場,所以FET實際上就是指這種器件是電場驅動的晶體管。如果在上下極板加上正電壓,就會在材料中建立電場,如下圖所示,其中綠色的線為電場線。

全面分析MOSFET狀況

由于圖中這里所示為P摻雜(Ⅲ族元素摻雜),紅色區域中存在空穴(也就是正電荷),在外加電場的作用下,正電荷就會往下離開,從而在上表面形成不含有自由載流子的區域,也就是耗盡區(depletion region)。

全面分析MOSFET狀況

而施加的電壓足夠高時,將把耗盡層內的空穴進一步驅趕,并吸引電子往上表面運動,在上表面堆積可以導電的電子,從而形成N型半導體,從而形成反型層(之所以叫反型層是指在電場作用下,該區域內的自由載流子與摻雜形成的半導體載流子相反)。

一般我們將開始形成反型層時施加的電壓稱為 ,即門檻電壓。反型層也就是我們后面要提到的導電溝道(沿水平方向形成導電溝道)。這到底和MOSFET工作有什么關系?

全面分析MOSFET狀況

在維基百科上看到的導電溝道形成的圖很有意思,分享給大家:

全面分析MOSFET狀況

(三)MOSFET 工作原理

以平面耗盡型N溝道MOSFET為例,基本結構如下圖所示。可以看到,從左到右為NPN的摻雜,在擴散作用下,會自然形成像圖中所示的深紅色的耗盡區(depletion region),根據前面所述,耗盡區是不能導電的,因此漏極(Drain)到源極(Source)在未加外加電場的時是斷開的,因此該結構是Normal off的結構。

全面分析MOSFET狀況

注意到,圖中正中心區域就是之前講的核心部分,從上往下,橘黃色,黃色,淺紅色依次為金屬、氧化物、P摻雜。當VGS>0,會開始在氧化層下面首先形成新的耗盡層,如下如所示。

全面分析MOSFET狀況

當VGS大于VTH,形成反型層,如下圖所示。

全面分析MOSFET狀況

由于反型層相當于N摻雜的半導體,因此D和S直接直接連通,因此MOSFET導電溝道形成,進入導通狀態。

(四)MOSFET 輸出特性

如下圖所示為增強型N溝道MOS輸出特性。

全面分析MOSFET狀況

對于上圖所示的MOS,有三種工作區域:

1)夾斷區(cutoff mode)

當VGS<Vth,時MOS處于此工作區域,基本處于斷開狀態,但是此時仍存在較微弱的反型層,存在漏電流,其大小電流滿足:

全面分析MOSFET狀況

2)線性區(linear mode)

當VGS>Vth且VDS<VGS-Vth時為此區域,電流滿足:

全面分析MOSFET狀況

3)飽和區(saturation mode)

當VGS>Vth且VDS≥(VGS-Vth)時為飽和區,電流滿足:

全面分析MOSFET狀況

(五)MOSFET 符號與命名

前面僅僅是談到了增強型P溝道的MOSFET,而實際上的MOSFET是一個大家族,還有很多兄弟姐妹,下圖中除了JFET以外都是MOSFET。這么多符號怎么記住呢?有規律!

全面分析MOSFET狀況

1、門極符號

MOSFET不同于JFET,在Gate是不與導電溝道相連的,是有一層氧化絕緣層的,因此從符號中可以看出,MOSFET中Gate和溝道是由縫隙的,也就是有兩條豎線,或者一條豎線與三段虛線,而JFET則是一條豎線。

另外,細心的你可能還會發現,有的Gate形狀為“L”,有的則是“T”,如果是“L”,意味著Gate和Source在物理結構上靠得更近。

2、溝道形狀

增強型MOSFET在未加外部電壓時為斷開(normal off),而耗盡型MOSFET則在未加外部電壓時為導通(normal on)。所以增強型MOSFET的溝道為三段虛線,意味著還未導通,而耗盡型MOSFET的溝道則是一條直線。

3、箭頭方向

對于含有bulk connection的MOSFET,區分P溝道與N溝道就是靠箭頭方向。箭頭方向遵循一個準則,P指向N,如果溝道是P,則由溝道指向外,如果溝道是N,則由外指向溝道。

(六)MOSFET主要參數

MOSFET參數很多,包括直流參數、交流參數和極限參數,但一般使用時關注以下主要參數:

1、IDSS—飽和漏源電流。是指結型或耗盡型絕緣柵場效應管中,柵極電壓UGS=0時的漏源電流。

2、UP—夾斷電壓。是指結型或耗盡型絕緣柵場效應管中,使漏源間剛截止時的柵極電壓。

3、UT—開啟電壓。是指增強型絕緣柵場效管中,使漏源間剛導通時的柵極電壓。

4、gM—跨導。是表示柵源電壓UGS—對漏極電流ID的控制能力,即漏極電流ID變化量與柵源電壓UGS變化量的比值。gM是衡量場效應管放大能力的重要參數。

5、BUDS—漏源擊穿電壓。是指柵源電壓UGS一定時,場效應管正常工作所能承受的最大漏源電壓。這是一項極限參數,加在場效應管上的工作電壓必須小于BUDS。

6、PDSM—最大耗散功率。也是一項極限參數,是指場效應管性能不變壞時所允許的最大漏源耗散功率。使用時,場效應管實際功耗應小于PDSM并留有一定余量。

7、IDSM—最大漏源電流。是一項極限參數,是指場效應管正常工作時,漏源間所允許通過的最大電流。場效應管的工作電流不應超過IDSM。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 半導體
    +關注

    關注

    335

    文章

    28615

    瀏覽量

    232666
  • 電子
    +關注

    關注

    32

    文章

    1935

    瀏覽量

    90670
  • 電荷
    +關注

    關注

    1

    文章

    650

    瀏覽量

    36653
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    硅基時代的黃昏:為何SiC MOSFET全面淘汰IGBT?

    革命性替代:為何SiC MOSFET全面淘汰IGBT? —— 當效率差距跨越臨界點,IGBT被淘汰便是唯一結局 傾佳電子楊茜致力于推動國產SiC碳化硅模塊在電力電子應用中全面取代進口IGBT模塊
    的頭像 發表于 05-30 16:24 ?167次閱讀
    硅基時代的黃昏:為何SiC <b class='flag-5'>MOSFET</b><b class='flag-5'>全面</b>淘汰IGBT?

    電磁環境動態監測與分析平臺軟件全面解析

    電磁環境動態監測與分析平臺軟件全面解析
    的頭像 發表于 04-28 16:28 ?163次閱讀
    電磁環境動態監測與<b class='flag-5'>分析</b>平臺軟件<b class='flag-5'>全面</b>解析

    國產碳化硅MOSFET全面開啟對超結MOSFET的替代浪潮

    碳化硅(SiC)MOSFET全面取代超結(SJ)MOSFET的趨勢分析及2025年對電源行業的影響 一、SiC MOSFET取代SJ
    的頭像 發表于 03-02 11:57 ?274次閱讀
    國產碳化硅<b class='flag-5'>MOSFET</b><b class='flag-5'>全面</b>開啟對超結<b class='flag-5'>MOSFET</b>的替代浪潮

    超結MOSFET升級至650V碳化硅MOSFET的根本驅動力分析

    隨著BASiC基本半導體等企業的650V碳化硅MOSFET技術升級疊加價格低于進口超結MOSFET,不少客戶已經開始動手用國產SiC碳化硅MOSFET全面取代超結
    的頭像 發表于 03-01 08:53 ?438次閱讀
    超結<b class='flag-5'>MOSFET</b>升級至650V碳化硅<b class='flag-5'>MOSFET</b>的根本驅動力<b class='flag-5'>分析</b>

    國產SiC碳化硅MOSFET行業亂象的深度分析

    國產碳化硅MOSFET行業亂象的深度分析,產品亂象本質上是技術追趕期“速度”與“質量”失衡的產物。唯有通過技術深耕、標準完善與生態重構,才能實現從“低端內卷”向“高端引領”的跨越。從“唯參數論”轉向“全生命周期質量評估”,鼓勵長期技術投入。
    的頭像 發表于 03-01 08:21 ?492次閱讀

    MOSFET開關損耗和主導參數

    本文詳細分析計算開關損耗,并論述實際狀態下功率MOSFET的開通過程和自然零電壓關斷的過程,從而使電子工程師知道哪個參數起主導作用并更加深入理解MOSFETMOSFET開關損耗 1
    發表于 02-26 14:41

    MOSFET在車輛應急啟動的應用方案 #MOSFET #汽車 #應急系統 #應用

    MOSFET
    微碧半導體VBsemi
    發布于 :2025年02月17日 17:08:51

    橋式電路中碳化硅MOSFET替換超結MOSFET技術注意事項

    在橋式電路中,國產碳化硅(SiC)MOSFET(如BASiC基本股份)替換超結(SJ)MOSFET具有顯著優勢,但也需注意技術細節。傾佳電子楊茜從性能優勢和技術注意事項兩方面進行深度分析: 傾佳電子
    的頭像 發表于 02-11 22:27 ?253次閱讀
    橋式電路中碳化硅<b class='flag-5'>MOSFET</b>替換超結<b class='flag-5'>MOSFET</b>技術注意事項

    MOSFET在自動售貨機的應用 #MOSFET #自動售貨機 #應用 #半導體 #電子

    MOSFET
    微碧半導體VBsemi
    發布于 :2025年02月10日 17:55:53

    5G電源應用碳化硅B3M040065Z替代超結MOSFET

    傾佳電子楊茜以48V 3000W 5G電源應用為例分析BASiC基本股份國產碳化硅MOSFET B3M040065Z替代超結MOSFET的優勢,并做損耗仿真計算: 傾佳電子楊茜致力于推動國產SiC
    的頭像 發表于 02-10 09:37 ?335次閱讀
    5G電源應用碳化硅B3M040065Z替代超結<b class='flag-5'>MOSFET</b>

    為什么650V SiC碳化硅MOSFET全面取代超結MOSFET和高壓GaN氮化鎵器件?

    650V SiC碳化硅MOSFET全面取代超結MOSFET和高壓GaN氮化鎵器件
    的頭像 發表于 01-23 16:27 ?666次閱讀
    為什么650V SiC碳化硅<b class='flag-5'>MOSFET</b><b class='flag-5'>全面</b>取代超結<b class='flag-5'>MOSFET</b>和高壓GaN氮化鎵器件?

    功率MOSFET故障分析

    控制、轉換和調節。然而,由于其工作環境復雜且多變,功率MOSFET在使用過程中可能會遇到各種故障。本文將對功率MOSFET的常見故障進行分析,并探討其故障機制和預防措施。
    的頭像 發表于 10-08 18:29 ?1026次閱讀

    如何對基于MOSFET的VI電流源進行穩定性仿真?

    您好,我在設計基于MOSFET的VI電流源時參考了文獻sboa327中的示例,但是在進行穩定性分析時得不到文獻中的結果,TI Precision labs也看了,沒有帶MOSFET的例子。能否幫我
    發表于 07-31 06:41

    驅動電流對MOSFET性能有什么影響

    驅動電流對MOSFET(金屬氧化物半導體場效應晶體管)性能有著顯著的影響。MOSFET作為現代電子系統中常用的開關元件,其性能直接決定了系統的效率、穩定性和可靠性。以下將詳細分析驅動電流對MO
    的頭像 發表于 07-24 16:27 ?1136次閱讀

    MOSFET的基本結構與工作原理

    的反向阻斷和導通特性有明顯的影響。 為分析和表述方便,定義柵極到源極(就是柵極到體端)的電壓為UGS,漏極到源極的電壓為UDS,流經MOSFET的電流,即流入漏極的電流為ID。 MOSFET
    發表于 06-13 10:07