完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 鋰金屬電池
鋰金屬電池是脫胎于麻省理工學院的SolidEngergy開發,這一技術能將當前鋰電池的體積縮小一半,未來可以用于電動汽車。
文章:137個 瀏覽:4518次 帖子:0個
近年來,石墨在鋰離子電池(LIBs)中的低理論容量(372 mAh g?1)已經不能滿足人們對高能量密度的安全可充電電池的需求。
用固相燒結法合成了LLZTO球團。在25°C時,離子導電率為4.18 × 10-4 S cm-1。復合鋰電陽極是通過原位轉換和合金化反應合成的。
近年來,為了響應綠色可持續發展的戰略要求,化石燃料向可再生能源過渡的速度不斷加快。為了滿足日益增長的高效儲能需求,可充電電池面臨著巨大的挑戰。
要點一:高壓固態電解質的概念,常見測試方法與高壓分解機制。文章針對高壓穩定的基礎概念與常見理論/實踐模型進行了討論(圖2)。此外,還對常用高壓穩定固態電...
固態電解質內部的鋰細絲(枝晶)生長是造成電解質結構損傷、性能退化甚至內部短路的重要原因,嚴重限制固態鋰金屬電池的商業化應用。
近年來,高濃縮電解液(HCE)、局部高濃縮電解質(LHCE)、和弱溶劑化電解液(WSE)的新設計概念將鋰金屬負極的循環可逆性帶入了一個新時代,其中的核心...
通過與液體電解質的副反應形成的非活性鋰導致鋰金屬電池的電池失效。為了抑制非活性鋰的形成和生長,需要進一步了解非活性鋰的形成機理和組成。
利用電分析和納米尺度表征方法證明鋰電鍍形貌和電流密度高度相關
安全耐用的鋰金屬電池需要均勻的鋰沉積形貌。電解液修飾能夠調控鋰沉積,并提高電池的可循環性。
鋰金屬電池(LMB),其能量密度可超過 500?Wh?kg?1,是當前電池技術發展的重點。然而,將可逆鋰與循環后鋰金屬負極中的不可逆鋰區分開來仍然是一個...
基于四個關鍵特征,SSE被認為能夠延遲TR。首先,SSE具有本質上較差的可燃性和揮發性;因此,它們調節熱量釋放的傳播和緩慢燃燒。在OLE-LIBs的燃燒...
一個弱的鋰離子溶劑化溶劑2-甲基四氫呋喃被用作電解液溶劑,以減輕Li+脫溶劑化的動力學障礙。
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |