女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

GaN-SiC混合材料更薄和更高功率

kus1_iawbs2016 ? 來源:工程師曾玲 ? 2019-02-02 17:29 ? 次閱讀

瑞典的研究人員在碳化硅(SiC)上生長出更薄的IIIA族氮化物結構,以期實現高功率和高頻薄層高電子遷移率晶體管(T-HEMT)和其他器件。

從圖1可以看出,新結構采用高質量的60nm無晶界氮化鋁(AlN)成核層,而不是大約1-2μm厚的氮化鎵(GaN)緩沖層,以避免大面積擴展缺陷。成核層允許高質量的GaN在0.2μm的厚度內生長。

圖1:(a)常規和(b)低TBR AlN成核,沿GaN / AlN / SiC界面沿[11-20]方向的橫截面TEM圖像。(c)GaN /低TBR AlN NL / SiC的HRTEM圖像。(d)GaN /低TBR AlN NL界面處的HRTEM。(e)低TBR AlN NL / SiC界面處HRTEM圖像。

正常厚度的緩沖層用于轉變和降低由于GaN和SiC之間3.5%晶格失配所引起的缺陷。需注意的是GaN與藍寶石和硅等其他襯底的失配率要高得多。這樣的緩沖層會為高功率和高頻器件帶來許多問題。這些層通常會摻雜碳或鐵以增加電阻,目的是將電流限制在溝道區域,避免寄生傳導的泄漏效應。這些摻雜無會產生電荷俘獲狀態,這可能導致其對性能的負面影響,例如射頻操作中的電流崩潰。

另外,較薄的器件還應具有較低的熱阻,從而改善熱管理。來自SweGaN AB,查爾姆斯理工大學和林雪平大學的團隊評論說:“GaN / AlN / SiC界面產生的空洞和位錯等結構缺陷會引入熱邊界電阻(TBR),導致HEMT中通道溫度升高30-40%。”

降低昂貴材料的需求量是該項工作的另一個亮點。據研究人員估計,包括前體和氣體在內的原材料需求量將降低90%,同時由于所需的生長時間縮短,處理成本也隨之降低。

新的AlN成核工藝避免了導致柱狀生長的顆粒狀形態的產生——造成的這種缺陷會被帶入覆蓋的GaN中。通常情況下,顆粒形態的產生是由于生長表面上鋁原子的低遷移率造成的。

IIIA氮化物材料在硅面4H-SiC上生長。熱壁金屬有機化學氣相沉積法(MOCVD)用于制造具有60nm AlN成核,200nm GaN溝道,高達1.5nm的AlN中間層,10-14nm AlGaN勢壘(~30%Al)的外延結構,和2nm GaN蓋帽層。采用低熱邊界電阻(低TBR)技術生產的60nm AlN可由熱壁生長實現。

盡管結構厚度更薄,但在低108 /cm-2范圍內的穿透位錯密度比具有相同厚度的典型GaN層低兩個數量級,研究人員如此估計。在具有2nm GaN帽和14nm Al0.29Ga0.71N勢壘的結構上的非接觸式霍爾測量得到9.8×1012/cm2的二維電子氣(2DEG)密度和2050cm2 / V-s遷移率。薄層電阻為315Ω/m2。

測試T-HEMT是在具有2nm GaN帽,10nm Al0.3Ga0.7N勢壘和1nm AlN中間層的材料上制備的。基于鉭的觸點用于源極/漏極,接觸電阻為0.3Ω-mm。

GaN-SiC混合材料更薄和更高功率

圖2:(a)直流漏極電流 - 電壓(IDS-VDS)特性,(b)傳輸特性以及10V漏極偏置(VDS)下的柵極和漏極電流與柵極電壓(VGS)的函數關系,(c)跨導(gm)作為柵極電位的函數,和(d)作為T-HEMT的VDSQ的函數的射頻輸出功率密度。(e)沒有頂部活性層的異質結構的垂直和側向擊穿特性。

該器件實現了1.1A / mm的高導通電流密度和1.3Ω-mm的低歸一化導通電阻。(圖2)飽和電流可維持高達30V的漏極偏壓。采用10V漏極偏壓時,夾斷很明顯,跨導達到500mS / mm。閾值擺幅取決于柵極長度:0.1μm為250mV / decade,0.2μm為130mV / decade。對于0.1μm和0.2μm的柵極,擊穿電壓分別為70V和140V。

研究人員表明“擊穿電壓和柵極長度之間的線性關系表明,由于柵極長度和柵極 - 漏極間距的限制,擊穿是橫向發生的。”

柵極 - 漏極間距為2μm,遠遠低于通常用于GaN HEMT的通常10-20μm,目的是為了提高功率性能。而傳統的GaN功率HEMT具有微米級的柵極長度。

30GHz時的負載牽引測量在40V漏極 - 源極靜態偏置(VDSQ)下產生5.8W / mm的峰值射頻功率密度。

在沒有上AlN / AlGaN層的外延疊層上的擊穿測量在橫向和垂直方向上產生高達1.5kV擊穿電壓。該團隊說:“在這兩種情況下,擊穿是由于觸點的不良劃定。因此,預期堆疊的實際擊穿電壓會更高。也就是說,擊穿受表面限制,并證實沒有界面載體。”

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3160

    瀏覽量

    64469
  • GaN
    GaN
    +關注

    關注

    19

    文章

    2177

    瀏覽量

    76184

原文標題:用于高頻和功率電子器件的GaN-SiC混合材料

文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導體技術創新聯盟】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    混合電源設計上,Si、SiCGaN如何各司其職?

    ,電子發燒友近期對此也進行了報道。 在電源、逆變器等領域,近年第三代半導體的興起,讓各種采用SiCGaN的方案出現在市場上,同時也包括多種器件混合使用的方案,所以這些混合方案都有哪些
    的頭像 發表于 07-08 02:04 ?4052次閱讀
    在<b class='flag-5'>混合</b>電源設計上,Si、<b class='flag-5'>SiC</b>、<b class='flag-5'>GaN</b>如何各司其職?

    開關損耗更低、效率更高,增速超越SiCGaN開始進軍光儲、家電市場

    的逆變器則主要采用了SiC。 ? 但近年來GaN開始向著全功率市場擴展,甚至朝著SiC的光儲、家電等優勢領域進發,這或許意味著GaN將改變當
    的頭像 發表于 07-04 00:10 ?5252次閱讀

    什么是IGBT/SiC/GaN HEMT功率芯片/模塊/模組?特性是什么?主要應用哪里?

    IGBT/SiC/GaN HEMT功率芯片/模塊/模組 一、核心器件定義 ? IGBT(絕緣柵雙極型晶體管) ? 電力電子領域核心開關器件,通過柵極電壓控制導通狀態: ? 結構特性 ?:融合
    的頭像 發表于 05-26 14:37 ?240次閱讀

    GaNSiC功率器件深度解析

    本文針對當前及下一代電力電子領域中市售的碳化硅(SiC)與氮化鎵(GaN)晶體管進行了全面綜述與展望。首先討論了GaNSiC器件的材料特性
    的頭像 發表于 05-15 15:28 ?378次閱讀
    <b class='flag-5'>GaN</b>與<b class='flag-5'>SiC</b><b class='flag-5'>功率</b>器件深度解析

    GaN、超級SI、SiC這三種MOS器件的用途區別

    如果想要說明白GaN、超級SI、SiC這三種MOS器件的用途區別,首先要做的是搞清楚這三種功率器件的特性,然后再根據材料特性分析具體應用。
    的頭像 發表于 03-14 18:05 ?754次閱讀

    SiCGaN技術專利競爭:新興電力電子領域的創新機遇

    在過去十年中,碳化硅(SiC)和氮化鎵(GaN)技術的迅速崛起顯著重塑了電力電子行業。這些寬禁帶材料提供了諸多優勢,如降低功率損耗、更高的開
    的頭像 發表于 03-07 11:10 ?492次閱讀
    <b class='flag-5'>SiC</b>與<b class='flag-5'>GaN</b>技術專利競爭:新興電力電子領域的創新機遇

    基于Si IGBT/SiC MOSFET的混合開關器件綜述

    拿到一個ST的宣傳材料,該資料介紹了Si/SiC混合功率器件可能是過渡到全SiC的中間方案,也找了文章了解了一下原理。資料有限,標題的問題沒
    的頭像 發表于 03-01 14:37 ?753次閱讀
    基于Si IGBT/<b class='flag-5'>SiC</b> MOSFET的<b class='flag-5'>混合</b>開關器件綜述

    香港科技大學陳敬課題組揭示GaNSiC材料的最新研究進展

    基于寬禁帶半導體氮化鎵,碳化硅的最新研究進展。研究成果覆蓋功率器件技術和新型器件技術: 高速且具備優越開關速度控制能力的3D堆疊式GaN/SiC cascode 功率器件 多年來,商業
    的頭像 發表于 02-19 11:23 ?561次閱讀
    香港科技大學陳敬課題組揭示<b class='flag-5'>GaN</b>與<b class='flag-5'>SiC</b><b class='flag-5'>材料</b>的最新研究進展

    電動汽車的SiC演變和GaN革命

    電子發燒友網站提供《電動汽車的SiC演變和GaN革命.pdf》資料免費下載
    發表于 01-24 14:03 ?1次下載
    電動汽車的<b class='flag-5'>SiC</b>演變和<b class='flag-5'>GaN</b>革命

    SiCGaN器件的兩大主力應用市場

    氮化鎵(GaN)和碳化硅(SiC)是寬禁帶(WBG)半導體材料,由于其獨特性,使其在提高電子設備的效率和性能方面起著至關重要的作用,特別是在DC/DC轉換器和DC/AC逆變器領域。
    的頭像 發表于 11-20 16:21 ?1300次閱讀
    <b class='flag-5'>SiC</b>和<b class='flag-5'>GaN</b>器件的兩大主力應用市場

    GaNSiC功率器件的特性和應用

    如今,圍繞第三代半導體的研發和應用日趨火熱。由于具有更大的禁帶寬度、高耐壓、高熱導率、更高的電子飽和速度等特點,第三代半導體材料能夠滿足未來電子產品在高溫、高功率、高壓、高頻等方面更高
    的頭像 發表于 10-18 15:40 ?1791次閱讀
    <b class='flag-5'>GaN</b>和<b class='flag-5'>SiC</b><b class='flag-5'>功率</b>器件的特性和應用

    什么是SiC功率器件?它有哪些應用?

    SiC(碳化硅)功率器件是一種基于碳化硅材料制造的功率半導體器件,它是繼硅(Si)和氮化鎵(GaN)之后的第三代半導體
    的頭像 發表于 09-10 15:15 ?3922次閱讀

    芯干線科技GaN功率器件及應用

    的性能提升提供了強大動力。而現今,以碳化硅(SiC)和氮化鎵(GaN)等為代表的寬禁帶半導體材料,作為第三代半導體材料,正因其優異的性能而備受矚目,其中碳化硅(
    的頭像 發表于 08-21 10:01 ?1006次閱讀
    芯干線科技<b class='flag-5'>GaN</b><b class='flag-5'>功率</b>器件及應用

    詳解電力電子領域碳化硅(SiC)的熱行為

    (on))。除了更高的載流子遷移率外,這種較低的電阻還得到了SiC比硅更高的擊穿場強的輔助。這一特性使得器件結構中的漂移層。對于許多工業
    的頭像 發表于 07-19 11:49 ?4.8w次閱讀
    詳解電力電子領域碳化硅(<b class='flag-5'>SiC</b>)的熱行為

    Si+SiC+GaN混合方案,解決數據中心PSU高功率需求

    的PSU功率密度要求,讓SiCGaN等三代半器件進入數據中心PSU提供了極佳的市場機會。近年來功率器件廠商都推出了多種采用SiC
    的頭像 發表于 07-05 00:12 ?4821次閱讀
    Si+<b class='flag-5'>SiC+GaN</b><b class='flag-5'>混合</b>方案,解決數據中心PSU高<b class='flag-5'>功率</b>需求