女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

NVIDIA GPU助力提升模型訓練和推理性價比

GLeX_murata_eet ? 來源:NVIDIA英偉達企業解決方案 ? 作者:NVIDIA英偉達企業解 ? 2021-08-23 17:09 ? 次閱讀

無量推薦系統承載著騰訊PCG(平臺與內容事業群)的推薦場景,包括: 騰訊看點(瀏覽器、QQ看點、商業化)、騰訊新聞、騰訊視頻、騰訊音樂、閱文、應用寶、小鵝拼拼等。無量推薦系統支持日活躍用戶達數億級別,其中的模型數量達數千個,日均調用服務達到千億級別。無量推薦系統,在模型訓練和推理都能夠進行海量Embedding和DNN模型的GPU計算,是目前業界領先的體系結構設計。

傳統推薦系統面臨挑戰

傳統推薦系統具有以下特點: 訓練是基于參數服務器的框架,解決海量數據和稀疏特征的分布式訓練問題。推理通常分離大規模Embedding和DNN,只能進行DNN的GPU加速。 所以,傳統的推薦系統架構具有一些局限性:1. 大規模分布式架構有大量的額外開銷,比如參數和梯度的網絡收發。2. 隨著DNN模型復雜性的的進一步提升,CPU的計算速度開始捉襟見肘。 隨著業務的快速增長,日活用戶增多,對其調用數量快速增加,給推薦系統后臺帶來了新的挑戰:1. 模型更加復雜,計算量更大,但是參數服務器的分布式架構有效計算比很低。2. 海量Embedding因為規模龐大,查詢和聚合計算難以有效利用GPU高性能顯存和算力的優勢。

GPU助力提升模型訓練和推理性價比

基于以上的挑戰,騰訊PCG(平臺與內容事業群)選擇使用基于NVIDIA A100 GPU的分布式系統架構來創建無量推薦系統。

1. 通過多級存儲和Pipeline優化,在HPC上完成大規模推薦模型的GPU的高性能訓練。2. 基于特征訪問Power-law分布的特性,GPU緩存高頻特征參數,同時從CPU中動態獲取低頻特征參數,實現了大規模推薦模型完整的GPU端到端模型推理。

騰訊PCG有多種類型的推薦業務場景。比如信息流推薦的QQ瀏覽器、QQ看點、新聞推薦的騰訊新聞、視頻推薦的騰訊視頻、微視、App推薦的應用寶、以及騰訊音樂的音樂推薦和閱文集團的文學推薦。

無量推薦系統承載了這些推薦業務場景的模型訓練和推理服務。基于傳統的推薦系統架構,無量推薦系統使用大量CPU資源,通過分布式架構可以擴展到TB級模型的訓練和部署,取得了巨大的成功。隨著業務的快速增長,日活用戶增多,對其調用數量快速增加,傳統架構局限性限制了推薦系統的架構擴展和性能提升。

通過使用GPU訓練和推理,單機多卡的GPU算力可以達到數十臺CPU機器的算力,節省了大量的額外分布式開銷。通過充分利用A100 GPU高性能顯存快速訪問Embedding,以及并行算力處理DNN推理,單張A100 GPU可以在相同的延遲下推理10倍于CPU的打分樣本。目前基于GPU的推薦架構可以提升模型訓練和推理性價比1~3倍。

未來,無量推薦系統將不斷優化推薦模型在GPU上的應用,利用HPC多機多卡,混合精度等能力,進一步提高推薦場景使用GPU的性價比。

重磅!NVIDIA行業微站一睹為快!內容涵蓋NVIDIA主要的12大行業方案,以及NVIDIA當期重點產品資料。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • NVIDIA
    +關注

    關注

    14

    文章

    5238

    瀏覽量

    105766

原文標題:NVIDIA A100 GPU助力騰訊PCG加速無量推薦系統

文章出處:【微信號:murata-eetrend,微信公眾號:murata-eetrend】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    如何在Ollama中使用OpenVINO后端

    /GPU/NPU)為模型推理提供了高效的加速能力。這種組合不僅簡化了模型的部署和調用流程,還顯著提升
    的頭像 發表于 04-14 10:22 ?318次閱讀

    英偉達GTC25亮點:NVIDIA Dynamo開源庫加速并擴展AI推理模型

    NVIDIA Dynamo 提高了推理性能,同時降低了擴展測試時計算 (Scaling Test-Time Compute) 的成本;在 NVIDIA Blackwell 上的推理優化
    的頭像 發表于 03-20 15:03 ?542次閱讀

    NVIDIA 推出開放推理 AI 模型系列,助力開發者和企業構建代理式 AI 平臺

    NVIDIA訓練的全新 Llama Nemotron 推理模型,為代理式 AI 提供業務就緒型基礎 埃森哲、Amdocs、Atlassian、Box、Cadence、CrowdStrike
    發表于 03-19 09:31 ?199次閱讀
    <b class='flag-5'>NVIDIA</b> 推出開放<b class='flag-5'>推理</b> AI <b class='flag-5'>模型</b>系列,<b class='flag-5'>助力</b>開發者和企業構建代理式 AI 平臺

    摩爾線程GPU原生FP8計算助力AI訓練

    并行訓練推理,顯著提升訓練效率與穩定性。摩爾線程是國內率先原生支持FP8計算精度的國產GPU企業,此次開源不僅為AI
    的頭像 發表于 03-17 17:05 ?471次閱讀
    摩爾線程<b class='flag-5'>GPU</b>原生FP8計算<b class='flag-5'>助力</b>AI<b class='flag-5'>訓練</b>

    無法在GPU上運行ONNX模型的Benchmark_app怎么解決?

    在 CPU 和 GPU 上運行OpenVINO? 2023.0 Benchmark_app推斷的 ONNX 模型。 在 CPU 上推理成功,但在 GPU 上失敗。
    發表于 03-06 08:02

    壁仞科技支持DeepSeek-V3滿血版訓練推理

    DeepSeek-V3滿血版在國產GPU平臺的高效全棧式訓練推理,實現國產大模型與國產GPU的深度融合優化,開啟國產算力新篇章。
    的頭像 發表于 03-04 14:01 ?796次閱讀

    使用NVIDIA推理平臺提高AI推理性

    NVIDIA推理平臺提高了 AI 推理性能,為零售、電信等行業節省了數百萬美元。
    的頭像 發表于 02-08 09:59 ?615次閱讀
    使用<b class='flag-5'>NVIDIA</b><b class='flag-5'>推理</b>平臺提高AI<b class='flag-5'>推理性</b>能

    GPU是如何訓練AI大模型

    在AI模型訓練過程中,大量的計算工作集中在矩陣乘法、向量加法和激活函數等運算上。這些運算正是GPU所擅長的。接下來,AI部落小編帶您了解GPU是如何
    的頭像 發表于 12-19 17:54 ?623次閱讀

    解鎖NVIDIA TensorRT-LLM的卓越性能

    Batching、Paged KV Caching、量化技術 (FP8、INT4 AWQ、INT8 SmoothQuant 等) 以及更多功能,確保您的 NVIDIA GPU 能發揮出卓越的推理性能。
    的頭像 發表于 12-17 17:47 ?702次閱讀

    PyTorch GPU 加速訓練模型方法

    在深度學習領域,GPU加速訓練模型已經成為提高訓練效率和縮短訓練時間的重要手段。PyTorch作為一個流行的深度學習框架,提供了豐富的工具和
    的頭像 發表于 11-05 17:43 ?1245次閱讀

    NVIDIA助力麗蟾科技打造AI訓練推理加速解決方案

    麗蟾科技通過 Leaper 資源管理平臺集成 NVIDIA AI Enterprise,為企業和科研機構提供了一套高效、靈活的 AI 訓練推理加速解決方案。無論是在復雜的 AI 開發任務中,還是在高并發
    的頭像 發表于 10-27 10:03 ?666次閱讀
    <b class='flag-5'>NVIDIA</b><b class='flag-5'>助力</b>麗蟾科技打造AI<b class='flag-5'>訓練</b>與<b class='flag-5'>推理</b>加速解決方案

    為什么ai模型訓練要用gpu

    GPU憑借其強大的并行處理能力和高效的內存系統,已成為AI模型訓練不可或缺的重要工具。
    的頭像 發表于 10-24 09:39 ?861次閱讀

    開箱即用,AISBench測試展示英特爾至強處理器的卓越推理性

    近期,第五代英特爾?至強?可擴展處理器通過了中國電子技術標準化研究院組織的人工智能服務器系統性能測試(AISBench)。英特爾成為首批通過AISBench大語言模型(LLM)推理性能測試的企業
    的頭像 發表于 09-06 15:33 ?687次閱讀
    開箱即用,AISBench測試展示英特爾至強處理器的卓越<b class='flag-5'>推理性</b>能

    魔搭社區借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社區是中國最具影響力的模型開源社區,致力給開發者提供模型即服務的體驗。魔搭社區利用NVIDIA TensorRT-LLM,大大提高了大語言模型
    的頭像 發表于 08-23 15:48 ?961次閱讀

    llm模型訓練一般用什么系統

    。 硬件系統 1.1 GPU(圖形處理器) 在訓練大型語言模型時,GPU是首選的硬件設備。相比于CPU,GPU具有更高的并行處理能力,可以顯
    的頭像 發表于 07-09 10:02 ?743次閱讀