女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

基于端到端的自動駕駛系統(tǒng)只能做demo嗎

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-12-26 10:39 ? 次閱讀

劍橋大學工程系團隊創(chuàng)辦的Wayve憑借機器學習算法,只需要使用攝像頭和基本的衛(wèi)星導航就可以實現(xiàn)自動駕駛汽車在陌生的道路上行駛。

自從2016年,英偉達公開了用于自動駕駛汽車的端到端深度學習技術之后,已經(jīng)有不計其數(shù)的公司、單位甚至愛好者用此技術做出自動駕駛的demo。簡單網(wǎng)絡結構,可以實現(xiàn)攝像頭輸入到剎車油門方向盤輸出的直接映射。然而這種低門檻也注定了它可以解決的問題并不多,很難應對具體駕駛環(huán)境上的復雜性。有專家甚至認為端到端不適合開發(fā)實用無人駕駛系統(tǒng),可以做demo,大規(guī)模商用可能非常困難。

端到端只配做demo嗎?由劍橋大學團隊創(chuàng)辦的Wayve無人駕駛軟件公司卻不這么認為。他們沒有用高精地圖,也沒有用激光雷達等昂貴的傳感器,當然也沒有給汽車手工輸入規(guī)則,只訓練20小時數(shù)據(jù),就可以在從未跑過的道路上駕駛。

Wayve 研發(fā)團隊認為既然是自動駕駛,就不需要手工編碼一些規(guī)定,要充分的展現(xiàn)其智能的特性。團隊采用了當下大熱的深度學習強化學習算法,建立了一個可以像人類一樣慢慢學習駕駛的自動駕駛系統(tǒng)。

經(jīng)過探索、優(yōu)化和評估三個步驟進行迭代,采用深度確定性策略梯度(Deep deterministic policy gradients,DDPG),來解決車道保持問題。

現(xiàn)有技術的圖像分類體系結構具有數(shù)百萬個參數(shù),而Wayve團隊的網(wǎng)絡構架是一個深度網(wǎng)絡,有4個卷積層和3個完全連接層,總共只有不到1萬個參數(shù),所有處理都在汽車GPU上執(zhí)行。

在強化學習仿真測試中,通過隨機生成曲線車道,以及道路紋理和車道標記,然后根據(jù)收集的數(shù)據(jù)優(yōu)化策略,再不斷重復。

結合了圖像翻譯和行為克隆的端到端零鏡頭框架

大多數(shù)自駕車公司使用模擬來驗證他們的系統(tǒng),而Wayve讓自動駕駛汽車在仿真中廣泛學習如何處理罕見的邊緣情況。Wayve訓練汽車進行模擬駕駛,并將學到的知識轉化到現(xiàn)實世界。

Wayve沒有將模擬和現(xiàn)實世界視為兩個不同的領域,而是設計了一個框架,將兩者結合起來,既可以在模擬中訓練轉向決策,又可以在現(xiàn)實世界中展現(xiàn)出類似的行為而無需進行真正的演示。

Wayve的模型由一對最初用于圖像轉換的卷積變分自動編碼器式的網(wǎng)絡組成,用于圖像翻譯,即無監(jiān)督圖像到圖像的翻譯網(wǎng)絡(Unsupervised Image-to-Image Translation Networks, UNIT))。在兩個域之間沒有任何已知的對齊或對應關系的情況下,模型能夠在它們之間進行轉換。下圖是一個捕捉場景主要布局的例子。值得注意的是,模擬器的視覺保真度在學習駕駛時并不是最重要的,他們的模擬世界就像卡通一樣,依舊可以很好的完成仿真模擬。Wayve研究稱,內(nèi)容保真度比視覺保真度更重要。但是,有效地模擬其他交通參與者的行為仍然是一個巨大的挑戰(zhàn)。

基于真實世界的駕駛數(shù)據(jù)和精心設計的邊緣案例來模擬場景

汽車由基于模型的深層強化學習系統(tǒng)驅動,該算法從離線收集的真實數(shù)據(jù)中學習預測模型。這讓模型學習并使用預測模型所想象的新場景數(shù)據(jù)來訓練駕駛。

Wayve致力于開發(fā)更豐富,更強大的時態(tài)預測模型,并相信這是構建智能安全自動駕駛汽車的關鍵。

目前,該系統(tǒng)已經(jīng)部署在 JaguarI-PACE 車上。這輛車贏得了2019年度歐洲年度車型的稱號,未來將在整個英國和歐洲大陸收集數(shù)據(jù)。當下,讓數(shù)據(jù)逐漸積累,其驅動算法可能達到人類駕駛員質量的95%,能夠處理交通燈,環(huán)形交叉路口,十字路口等。

盡管有人會覺得端到端的自動駕駛系統(tǒng),既不聰明也不靈活,發(fā)生問題難以解釋,然而Wayve在用其強大的算法證明這種深度學習的技術不只可以做demo,未來也可以保證安全,也可以商用。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器人
    +關注

    關注

    213

    文章

    29489

    瀏覽量

    211558
  • 自動駕駛
    +關注

    關注

    788

    文章

    14198

    瀏覽量

    169531
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    一文帶你厘清自動駕駛架構差異

    [首發(fā)于智駕最前沿微信公眾號]隨著自動駕駛技術飛速發(fā)展,智能駕駛系統(tǒng)的設計思路也經(jīng)歷了從傳統(tǒng)模塊化架構
    的頭像 發(fā)表于 05-08 09:07 ?168次閱讀
    一文帶你厘清<b class='flag-5'>自動駕駛</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>架構差異

    自動駕駛中基于規(guī)則的決策和大模型有何區(qū)別?

    自動駕駛架構的選擇上,也經(jīng)歷了從感知、決策控制、執(zhí)行的三段式架構到現(xiàn)在火熱的大模型,尤其是在2024年特斯拉推出FSD V12后,各車企更是陸續(xù)推出自家的
    的頭像 發(fā)表于 04-13 09:38 ?2759次閱讀
    <b class='flag-5'>自動駕駛</b>中基于規(guī)則的決策和<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大模型有何區(qū)別?

    東風汽車推出自動駕駛開源數(shù)據(jù)集

    近日,智能網(wǎng)聯(lián)汽車智駕數(shù)據(jù)空間構建研討會暨中汽協(xié)會智能網(wǎng)聯(lián)汽車分會、數(shù)據(jù)分會2024年度會議在上海舉辦。會上,東風汽車發(fā)布行業(yè)規(guī)模最大、涵蓋125萬組高質量數(shù)據(jù)的自動駕駛開源數(shù)據(jù)
    的頭像 發(fā)表于 04-01 14:54 ?476次閱讀

    技術分享 |多模態(tài)自動駕駛混合渲染HRMAD:將NeRF和3DGS進行感知驗證和AD測試

    多模態(tài)自動駕駛混合渲染HRMAD,融合NeRF與3DGS技術,實現(xiàn)超10萬㎡場景重建,多傳感器實時輸出,仿真更接近真實數(shù)據(jù)!然而,如何用高保真仿真場景快速驗證自動駕駛算法?HRMAD已集成至aiSim平臺,
    的頭像 發(fā)表于 03-26 16:05 ?3242次閱讀
    技術分享 |多模態(tài)<b class='flag-5'>自動駕駛</b>混合渲染HRMAD:將NeRF和3DGS進行感知驗證和<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>AD測試

    動量感知規(guī)劃的自動駕駛框架MomAD解析

    自動駕駛框架實現(xiàn)了感知與規(guī)劃的無縫集成,但通常依賴于一次性軌跡預測,這可能導致控制不穩(wěn)定,并且對單頓感知中的遮擋問題較為敏感。為解決這一問題,我們提出了動量感知
    的頭像 發(fā)表于 03-18 09:31 ?765次閱讀
    動量感知規(guī)劃的<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>框架MomAD解析

    DiffusionDrive首次在自動駕駛中引入擴散模型

    ? ? 近年來,自動駕駛成為研究熱點,其核心在于從傳感器數(shù)據(jù)直接學習駕駛決策。然而,駕駛
    的頭像 發(fā)表于 03-08 13:59 ?661次閱讀
    DiffusionDrive首次在<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>中引入擴散模型

    自動駕駛技術研究與分析

    傳遞和全局優(yōu)化的優(yōu)勢,成為智能駕駛技術發(fā)展的重要方向。與傳統(tǒng)模塊化架構相比,技術通過深度神經(jīng)網(wǎng)絡實現(xiàn)從傳感器數(shù)據(jù)輸入車輛控制信號輸出
    的頭像 發(fā)表于 12-19 13:07 ?784次閱讀

    自動泊車的應用

    與城市環(huán)境的復雜性和高速公路駕駛的風險相比,停車場景的特點是低速、空間有限和高可控性。這些特點為在車輛中逐步部署自動駕駛能力提供了可行
    的頭像 發(fā)表于 12-18 11:38 ?837次閱讀
    <b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>在<b class='flag-5'>自動</b>泊車的應用

    爆火的如何加速智駕落地?

    自動駕駛,唯有?)技術通過消除模塊間數(shù)據(jù)
    的頭像 發(fā)表于 11-26 13:17 ?963次閱讀
    爆火的<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>如何加速智駕落地?

    連接視覺語言大模型與自動駕駛

    自動駕駛在大規(guī)模駕駛數(shù)據(jù)上訓練,展現(xiàn)出很強的決策規(guī)劃能力,但是面對復雜罕見的駕駛場景,依然
    的頭像 發(fā)表于 11-07 15:15 ?631次閱讀
    連接視覺語言大模型與<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>

    Waymo利用谷歌Gemini大模型,研發(fā)端自動駕駛系統(tǒng)

    邁新步,為其機器人出租車業(yè)務引入了一種基于谷歌多模態(tài)大語言模型(MLLM)“Gemini”的全新訓練模型——“多模態(tài)自動駕駛模型”(EMMA)。
    的頭像 發(fā)表于 10-31 16:55 ?1579次閱讀

    Mobileye自動駕駛解決方案的深度解析

    強大的技術優(yōu)勢。 Mobileye的解決方案概述 1.1 什么是
    的頭像 發(fā)表于 10-17 09:35 ?762次閱讀
    Mobileye<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>解決方案的深度解析

    實現(xiàn)自動駕駛,唯有

    ,去年行業(yè)主流方案還是輕高精地圖城區(qū)智駕,今年大家的目標都瞄到了(End-to-End, E2E)。
    的頭像 發(fā)表于 08-12 09:14 ?1293次閱讀
    實現(xiàn)<b class='flag-5'>自動駕駛</b>,唯有<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>?

    FPGA在自動駕駛領域有哪些應用?

    是FPGA在自動駕駛領域的主要應用: 一、感知算法加速 圖像處理:自動駕駛中需要通過攝像頭獲取并識別道路信息和行駛環(huán)境,這涉及大量的圖像處理任務。FPGA在處理圖像上的運算速度快,可并行性強,且功耗
    發(fā)表于 07-29 17:09

    理想汽車加速自動駕駛布局,成立“”實體組織

    近期,理想汽車在其智能駕駛領域邁出了重要一步,正式成立了專注于“自動駕駛”的實體組織,該組織規(guī)模超過200人,標志著理想在
    的頭像 發(fā)表于 07-17 15:42 ?1563次閱讀