女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

Mini-Wifi充電寶散熱方案 | 透波絕緣氮化硼散熱膜

向欣電子 ? 2025-07-14 05:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

帶 MINI WIFI 的充電寶面臨著較為復雜的散熱問題,主要源于內部元件發熱、散熱空間有限及信號傳輸等因素的挑戰。

  • 充電寶在充電和放電過程中,鋰離子電池會因內部化學反應產生熱量,尤其是在高功率快充模式下,電池溫度上升更快。同時,MINI WIFI 模塊工作時,其芯片等部件也會產生熱量。此外,充電寶內部的電源管理芯片在高負載運行時同樣會釋放大量熱量。這些熱量疊加在一起,使得充電寶內部溫度顯著升高。
  • 散熱空間受限帶 MINI WIFI 的充電寶通常體積較小,內部空間緊湊,留給散熱結構的空間有限。這導致熱量難以有效散發,容易在內部積聚,進而影響各元件的性能和壽命。
  • 熱量相互影響充電寶產生的熱量會影響 MINI WIFI 模塊的性能,使其信號穩定性下降、傳輸速率變慢等。反之,MINI WIFI 模塊產生的熱量也會對充電寶的電池和電路產生影響,加速電池老化,甚至可能影響充電寶的正常充放電功能。
  • 外部環境影響散熱如果在高溫環境下使用或存放帶 MINI WIFI 的充電寶,會進一步加劇其散熱困難。例如,在陽光直射的車內或炎熱的戶外,充電寶內部熱量難以向外界環境傳導,溫度會持續升高,增加安全風險。
  • 散熱設計與材料不足部分廠商為控制成本,可能采用劣質散熱材料或簡化散熱設計,如使用導熱性能差的外殼、劣質散熱凝膠等,無法有效將內部熱量傳導出去,導致散熱問題更加突出。

無線技術已成為現代生活的隱形支柱,它將設備和系統連接起來,創造出更智能的家庭、更健康的生活方式和更高效的工業。隨著對可靠、低功耗和安全連接的需求成倍增長,創新解決方案正在推動這場無線革命,使物聯網IoT)能夠改變日常體驗和業務運營。無線技術正在重塑我們的生活、工作以及與周圍世界互動的方式。對可靠、低功耗和安全連接的需求比以往任何時候都要高。

5G毫米波通訊技術面臨的挑戰:兼顧散熱和信號傳輸

毫米波通信是未來無線移動通信重要發展方向之一,目前已經在大規模天線技術、低比特量化ADC、低復雜度信道估計技術、功放非線性失真等關鍵技術上有了明顯研究進展。隨著新一代無線通信對無線寬帶通信網絡提出新的長距離、高移動、更大傳輸速率的軍用、民用特殊應用場景的需求,針對毫米波無線通信的理論研究與系統設計面臨重大挑戰,開展面向長距離、高移動毫米波無線寬帶系統的基礎理論和關鍵技術研究,已經成為新一代寬帶移動通信最具潛力的研究方向之一。5G網絡比4G網絡的傳輸速度快10倍以上,具有傳輸速度快、穩定、高頻傳輸技術等優勢。

通訊電子產品輕薄化面臨的挑戰:芯片高性能和散熱問題

科技的不斷發展,人們對計算機和移動設備的需求也在不斷增加,現在的芯片的設計都是追求高性能的,人們需要在更快的速度下完成更復雜的任務,這就需要芯片能夠提供更多的運行能力。而這種高性能的設計卻是要以付出更高的代價,例如消耗更多的電力,引起更多的熱量的產生。芯片的小型化和高度集成化,會導致局部熱流密度大幅上升。算力的提升、速度的提高帶來巨大的功耗和發熱量,制約高算力芯片發展的主要因素之一就是散熱能力。


高性能必須伴隨著高功率,因為能夠提供高性能的芯片必須有足夠的能源去驅動它們,并支持它們在高速運轉期間產生的高溫。這樣的高功率和高溫度不斷累積,讓芯片產生更多的熱量。新的應用程序層出不窮,也是導致芯片越來越熱的原因之一。

晟鵬二維氮化硼低介電散熱材料

解決通訊電子領域產品散熱難題

1

散熱難題:二維化工藝制程技術,通過定向取向讓X-Y水平方向最高可達導熱系數100W/mK(ASTM E1461)。

2

絕緣難題:膜材電擊穿強度大于 40kV(ASTM D149)。

3

透波難題:1MHz~28MHz: 介電常數小于 4.50 ,介電損耗小于 0.005 (ASTM D150)。

4

柔性輕薄化:厚度范圍 30~200um,可折彎柔韌性,超薄空間要求。

5

穩定批量化生產:2021年3月佛山設立工廠,開始進入量產化階段;2024年8月東莞大朗新工廠產能大幅度提升。

6

自主創新全球領先技術工藝材料:卷材出貨,裸膜或單面背膠。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 散熱
    +關注

    關注

    3

    文章

    546

    瀏覽量

    32420
  • 充電寶
    +關注

    關注

    7

    文章

    735

    瀏覽量

    39681
  • 氮化硼
    +關注

    關注

    0

    文章

    42

    瀏覽量

    1746
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    氮化硼導熱絕緣片 | 車載充電橋OBC應用

    晟鵬公司研發的氮化硼導熱絕緣片憑借其高導熱性、耐高壓及輕量化等特性,在電動汽車OBC車載充電橋IGBT模組中展現出關鍵應用價值。OBC的熱管理需求:OBC將電網交流電轉換為直流電并為電池充電
    的頭像 發表于 04-30 18:17 ?213次閱讀
    <b class='flag-5'>氮化硼</b>導熱<b class='flag-5'>絕緣</b>片 | 車載<b class='flag-5'>充電</b>橋OBC應用

    聚酰亞胺(PI)/氮化硼(BN)復合薄膜提升鋰電池絕緣散熱效果 | SPA-SPK30替代藍

    、液冷等外部散熱方式難以有效解決電池單體間的溫度梯度問題。聚酰亞胺(PI)/氮化硼(BN)納米復合薄膜為解決這一難題提供了創新方案。聚酰亞胺本身具有優異的絕緣性和耐高
    的頭像 發表于 04-26 19:52 ?537次閱讀
    聚酰亞胺(PI)/<b class='flag-5'>氮化硼</b>(BN)復合薄膜提升鋰電池<b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>效果 | SPA-SPK30替代藍<b class='flag-5'>膜</b>

    半導體芯片高導熱絕緣材料 | 晟鵬氮化硼散熱

    芯片功耗提升,散熱重要性凸顯1,芯片性能提升催生散熱需求,封裝材料市場穩健增長AI需求驅動硬件高散熱需求。根據Canalys預測,兼容AI的個人電腦將從2025年開始快速普及,預計至2027年約占
    的頭像 發表于 04-18 06:06 ?284次閱讀
    半導體芯片高導熱<b class='flag-5'>絕緣</b><b class='flag-5'>透</b><b class='flag-5'>波</b>材料 | 晟鵬<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    “六邊形戰士”絕緣TIM材料 | 氮化硼

    引言:氮化硼,散熱界的“六邊形戰士”氮化硼材料的高導熱+強絕緣,完美適配5G射頻芯片、新能源電池、半導體封裝等高功率場景,是高性能絕緣導熱材
    的頭像 發表于 04-05 08:20 ?379次閱讀
    “六邊形戰士”<b class='flag-5'>絕緣</b>TIM材料 | <b class='flag-5'>氮化硼</b>

    二維氮化硼散熱 | 毫米通訊絕緣散熱材料

    5G毫米通訊技術面臨的挑戰:兼顧散熱和信號傳輸毫米通信是未來無線移動通信重要發展方向之一,目前已經在大規模天線技術、低比特量化ADC、低復雜度信道估計技術、功放非線性失真等關鍵技術上有了明顯
    的頭像 發表于 03-21 06:31 ?375次閱讀
    二維<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b> | 毫米<b class='flag-5'>波</b>通訊<b class='flag-5'>透</b><b class='flag-5'>波</b><b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>材料

    晟鵬技術 | 氮化硼散熱提升無線充電

    作為散熱材料雖然有一定效果,但其性能已逐漸無法滿足更高功率和更高效能的需求。在此背景下,氮化硼(BN)散熱作為一種新型散熱材料,因其獨特的
    的頭像 發表于 02-21 06:20 ?419次閱讀
    晟鵬技術 | <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>提升無線<b class='flag-5'>充電</b>

    氮化硼散熱無線充電應用 | 晟鵬技術

    作為散熱材料雖然有一定效果,但其性能已逐漸無法滿足更高功率和更高效能的需求。在此背景下,氮化硼(BN)散熱作為一種新型散熱材料,因其獨特的
    的頭像 發表于 02-13 08:20 ?693次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>無線<b class='flag-5'>充電</b>應用 | 晟鵬技術

    氮化硼散熱替代石墨提升無線充電效率分析

    作為散熱材料雖然有一定效果,但其性能已逐漸無法滿足更高功率和更高效能的需求。在此背景下,氮化硼(BN)散熱作為一種新型散熱材料,因其獨特的
    的頭像 發表于 02-12 06:20 ?557次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>替代石墨<b class='flag-5'>膜</b>提升無線<b class='flag-5'>充電</b>效率分析

    氮化硼散熱 | 解決芯片絕緣散熱問題

    1、任何電氣器件及電路都不可避免地伴隨有熱量的產生,要提高電子產品的可靠性以及電性能,就必須使熱量的產生達到最小程度,要管理這些熱量就需要了解有關熱力學的知識并深入掌握相關的材料知識:a.溫度對電路工作的影響:升高一個有源器件的溫度通常會改變它的電學參數,如增益、漏電流、失調電壓、閥電壓和正向壓降等等;改變無源元件的溫度通常會改變它們的數值;所以設計人員需要
    的頭像 發表于 01-08 06:32 ?826次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b> | 解決芯片<b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>問題

    高導熱高絕緣低介電材料 | 氮化硼散熱

    2.27g/cm3,莫式硬度為2,具有優良的電絕緣性、介電性能、高導熱性、耐金屬熔體腐蝕性、無明顯熔點、低熱膨脹系數。在0.1MPa的分壓下,氮化硼在中性或還原氣氛中,能
    的頭像 發表于 11-15 01:02 ?1221次閱讀
    高導熱高<b class='flag-5'>絕緣</b>低介電材料 | <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    半導體芯片高導熱絕緣低介電材料|氮化硼散熱

    芯片功耗提升,散熱重要性凸顯1,芯片性能提升催生散熱需求,封裝材料市場穩健增長AI需求驅動硬件高散熱需求。根據Canalys預測,兼容AI的個人電腦將從2025年開始快速普及,預計至2027年約占
    的頭像 發表于 11-09 01:03 ?1020次閱讀
    半導體芯片高導熱<b class='flag-5'>絕緣</b>低介電材料|<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    Die-cutting converting 精密模切加工|氮化硼散熱(白石墨烯)

    基于二維氮化硼納米片的復合薄膜,此散熱具有電磁、高導熱、高柔性、高絕緣、低介電系數、低介電
    的頭像 發表于 10-31 08:04 ?1138次閱讀
    Die-cutting converting 精密模切加工|<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>(白石墨烯)

    絕緣散熱材料 | 石墨片氮化硼散熱復合材料

    石墨片氮化硼散熱復合材料是一種結合了石墨片和氮化硼散熱各自優異性能的新型復合材料。一、石墨片
    的頭像 發表于 10-05 08:01 ?785次閱讀
    高<b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>材料 | 石墨片<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>復合材料

    IGBT主動散熱和被動散熱 | 氮化硼高導熱絕緣

    摘要:隨著絕緣柵雙極晶體管(IGBT)向高功率和高集成度方向發展,在結構和性能上有很大的改進,熱產生問題日益突出,對散熱的要求越來越高,IGBT芯片是產生熱量的核心功能器件,但熱量的積累會嚴重影響
    的頭像 發表于 09-15 08:03 ?1816次閱讀
    IGBT主動<b class='flag-5'>散熱</b>和被動<b class='flag-5'>散熱</b> | <b class='flag-5'>氮化硼</b>高導熱<b class='flag-5'>絕緣</b>片

    車載雷達 | 氮化硼散熱

    車載雷達目前主要使用的是超聲波雷達、毫米雷達和激光雷達。超聲波雷達利用超聲波進行測距,通過計算發射和接收信號的時間差來獲取周圍物體的位置信息。超聲波雷達的特點是體積小、成本低、抗環境干擾能力強
    的頭像 發表于 09-10 08:02 ?2263次閱讀
    車載雷達 | <b class='flag-5'>氮化硼</b><b class='flag-5'>透</b><b class='flag-5'>波</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>