女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

LPCVD和PECVD制備摻雜多晶硅層中的問題及解決方案

美能光伏 ? 2024-01-18 08:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

高質量的p型隧道氧化物鈍化觸點(p型TOPCon)是進一步提高TOPCon硅太陽能電池效率的可行技術方案。化學氣相沉積技術路線可以制備摻雜多晶硅層,成為制備TOPCon結構最有前途的工業路線之一。美能Poly5000是專為光伏工藝監控設計的在線POLY膜厚測試儀,采用領先的微納米薄膜光學測量技術,100%Poly-si沉積工藝監控,可對樣品進行快速、自動的5點同步掃描。使用Poly5000能夠優化多晶硅層膜厚特性,保證電池良率。

TOPCon電池工藝

TOPCon電池工藝一般為:先正面制絨、硼擴,再進行背面隧穿層、摻雜多晶硅層(Poly-Si)制備,之后再正面Al2O3膜層制備、正反面SiNx膜制備,最后絲印前后電極與燒結。

TOPCon結構依次為正面SiNx膜、Al2O3膜、P型發射極(p+)、N型硅片基底、SiO2膜、N型多晶硅薄膜(Poly-Si)、背面SiNx膜。

各膜層的作用

  • 正面SiNx薄膜(約75nm):由于SiNX 富含氫原子,可以在熱處理過程中對表面和體內的缺陷進行化學鈍化,從而降低表面電子的復合。同時由于SiNX 的光學特性,還可以實現電池正面和背面減反效果;

  • 背面SiNx薄膜:為了避免后續金屬化燒結過程漿料對膜層的破壞,SiNX 依靠其化學穩定性,主要用于背部膜層的保護;同時實現減反效果;

  • Al2O3(≤5nm)由于具備較高的負電荷密度,可以對P 型半導體如PERC 電池背面和TOPCon 電池的正面提供良好的場效應鈍化,即在近表面處增加一層具有高度穩定電荷的介質膜在表面附近造一個梯度電場,減少表面電子濃度從而降低表面電子空穴的復合速率。

  • 超薄隧穿層SiO2(<2.0 nm)及N型多晶硅薄膜(100~200nm):兩者共同形成鈍化接觸結構作為電池背面鈍化層,高摻雜的多晶硅(Poly-Si)層與 N型硅基體之間功函數差異引起的界面處能帶彎曲,使電子隧穿后有足夠的能級可以占據,更易于隧穿;而空穴占據的價帶邊緣處于 Poly-Si 的禁帶,不易隧穿,因此超薄氧化層可允許多子電子隧穿而阻擋少子空穴透過,從而使電子和空穴分離,減少了復合,在其上沉積一層金屬作為電極就實現了無需開孔的鈍化接觸結構。

13e23cca-b599-11ee-aa22-92fbcf53809c.png

制備多晶硅層的工藝方法

對于摻雜多晶硅層,一般有三種制備方法。其中有兩種屬于化學氣相沉積(chemical vapor deposition,CVD) 方法:分別是LPCVD法PECVD法。還有一種濺射法是屬于物理氣相沉積(physical vapor deposition, PVD)方法。

其中,LPCVD能同時完成氧化層、本征多晶硅層的制備,工業應用技術非常成熟。制備過程中僅需要在兩者反應中間,加入N2清洗、撿漏、抽真空等操作,即可在同一工步完成氧化層/本征多晶硅膜的制備。

13f6e486-b599-11ee-aa22-92fbcf53809c.png

但在LPCVD沉積時,會有兩種問題。

第一,在制備過程中,出現在電池的側面及正面都會必不可避免的附著隧穿層及多晶硅層,形成包裹。

第二,解決這個問題的辦法是“去繞鍍”,工藝流程如下:

  • HF酸單面清洗,去除繞鍍區域內的磷硅玻璃PSG(即正面、側面);

  • KOH堿液雙面清洗,去除繞鍍區域內的摻雜多晶硅(即正面、側面)。背面PSG層起到保護隧穿氧化層及摻雜多晶硅層作用;

HF酸雙面清洗,去除繞鍍區域內的SiO2(即正面、側面)、背面PSG;

140ce222-b599-11ee-aa22-92fbcf53809c.png

第二,LPCVD本征摻雜多晶硅工藝,多晶硅膜均勻性差。LPCVD制備的摻雜多晶硅層均勻性在±40%,遠不及制備本征非晶硅層的均勻性。LPCVD 制備摻雜多晶硅層時,沉積過程不受晶片表面上化學反應動力學的限制,而是受反應物向表面傳輸的限制時,導致膜層均勻性大大下降。解決此問題的方法,一般采用先沉積本征多晶硅層,再通過磷擴散或者離子注入的方式,進行多晶硅層的磷摻雜。磷擴散的方法是以POCl3為氣源,在700-850℃溫度下實現分解、形成PSG,再在850-900℃、N2環境下中,保持30分鐘,完成磷原子擴散。多晶硅層在高溫擴散爐中,能同步實現多晶硅的晶化處理,形成原子的規則排列,不需要后續退火工步。

PECVD鍍膜,也會產生輕微繞鍍問題,但有兩種方式解決。

第一種是清洗繞鍍:根據PECVD沉積膜原理,硅片置于基片臺上,側邊也暴露在反應氣體內,因此PECVD法制備多晶硅薄膜也會出現輕微繞鍍現象,但僅在側邊及硅片正面邊緣處。解決方法是用KOH堿液去除側邊及正面繞鍍的輕微摻雜多晶硅。因為KOH堿液對摻雜多晶硅層的刻蝕速度約604nm/min,遠大于對BSG硼硅玻璃的刻蝕速度,后者約11.4nm/min。因此,采用KOH堿液單面清洗去除摻雜多晶硅層時,KOH堿液對BSG的刻蝕可以忽略,BSG硼硅玻璃可對p+發射極起保護作用。剩余的BSG硼硅玻璃及繞鍍的SiO2層,可用HF酸雙面清洗去除。

第二種是減少多晶硅厚度。將沉積的多晶硅厚度從90 nm減少到30 nm,可以減小纏繞的影響。

美能在線Poly膜厚測試儀

美能Poly5000在線膜厚測試儀是專為光伏工藝監控設計,可以對樣品進行快速、自動的5點同步掃描,獲得樣品不同位置的膜厚分布信息,可根據客戶樣品大小定制測量尺寸。

  • 有效光譜范圍320nm~2400nm
  • 快速、自動的5點同步掃描
  • 重復性精度<0.5nm
  • 超廣測量范圍20nm~2000nm
  • 在線監控檢測實現碎片率
  • 實現全程產線自動化檢測、大大節約檢測時間

近年來,許多公司在利用LPCVD或PECVD和絲網印刷金屬化等成熟的光伏制造工藝,在TOPCon電池的性能提升上進行了巨大的努力。美能光伏提出專業的光學薄膜測量解決方案,為幫助企業在提高工藝技術中更加得心應手,讓光伏行業發展速度提升。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 太陽能電池
    +關注

    關注

    22

    文章

    1229

    瀏覽量

    70395
  • 晶硅
    +關注

    關注

    1

    文章

    53

    瀏覽量

    22937
  • PECVD
    +關注

    關注

    2

    文章

    23

    瀏覽量

    10308
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    TOPCon電池poly-Si的沉積摻雜工序提效優化

    TOPCon技術通過超薄SiO?和磷摻雜多晶硅(n?-poly-Si)實現載流子選擇性傳輸,理論效率可達28.7%。然而,poly-Si厚度存在矛盾:過厚(>100nm)增加寄生
    的頭像 發表于 06-27 09:02 ?62次閱讀
    TOPCon電池poly-Si<b class='flag-5'>層</b>的沉積<b class='flag-5'>摻雜</b>工序提效優化

    基于厚度梯度設計的TOPCon多晶硅指狀結構,實現25.28%量產效率突破

    隧穿氧化鈍化接觸(TOPCon)技術作為當前太陽能電池領域的核心技術之一,憑借其優異的背面鈍化性能,在工業生產中實現了廣泛應用。然而,多晶硅薄膜材料固有的窄帶隙和高吸收系數特性,導致其在
    的頭像 發表于 06-23 09:03 ?119次閱讀
    基于厚度梯度設計的TOPCon<b class='flag-5'>多晶硅</b>指狀結構,實現25.28%量產效率突破

    多晶硅鑄造工藝碳和氮雜質的來源

    本文介紹了在多晶硅鑄造工藝碳和氮雜質的來源、分布、存在形式以及降低雜質的方法。
    的頭像 發表于 04-15 10:27 ?376次閱讀
    <b class='flag-5'>多晶硅</b>鑄造工藝<b class='flag-5'>中</b>碳和氮雜質的來源

    LPCVD方法在多晶硅制備的優勢與挑戰

    本文圍繞單晶多晶硅與非晶三種形態的結構特征、沉積技術及其工藝參數展開介紹,重點解析LPCVD方法在多晶硅
    的頭像 發表于 04-09 16:19 ?673次閱讀
    <b class='flag-5'>LPCVD</b>方法在<b class='flag-5'>多晶硅</b><b class='flag-5'>制備</b><b class='flag-5'>中</b>的優勢與挑戰

    芯片制造多晶硅介紹

    多晶硅(Polycrystalline Silicon,簡稱Poly)是由無數微小晶粒組成的非單晶材料。與單晶(如襯底)不同,
    的頭像 發表于 04-08 15:53 ?900次閱讀
    芯片制造<b class='flag-5'>中</b>的<b class='flag-5'>多晶硅</b>介紹

    晶體管柵極多晶硅摻雜的原理和必要性

    本文介紹了多晶硅作為晶體管的柵極摻雜的原理和必要性。
    的頭像 發表于 04-02 09:22 ?656次閱讀
    晶體管柵極<b class='flag-5'>多晶硅</b><b class='flag-5'>摻雜</b>的原理和必要性

    多晶硅錠定向凝固生長方法

    鑄錠澆注法是較早出現的一種技術,該方法先將料置于熔煉坩堝中加熱熔化,隨后利用翻轉機械將其注入模具內結晶凝固,最初主要用于生產等軸多晶硅。近年來,為提升多晶硅電池轉換效率,通過控制模具
    的頭像 發表于 03-13 14:41 ?468次閱讀

    22.0%效率的突破:前多晶硅選擇性發射極雙面TOPCon電池的制備與優化

    隨著全球能源需求的增長,開發高效率太陽能電池變得尤為重要。本文旨在開發一種成本效益高且可擴展的制備工藝,用于制造具有前側SiOx/多晶硅選擇性發射極的雙面TOPCon太陽能電池,并通過優化工藝實現
    的頭像 發表于 03-03 09:02 ?623次閱讀
    22.0%效率的突破:前<b class='flag-5'>硅</b><b class='flag-5'>多晶硅</b>選擇性發射極雙面TOPCon電池的<b class='flag-5'>制備</b>與優化

    單晶圓系統:多晶硅與氮化硅的沉積

    。在動態隨機存取存儲器(DRAM)芯片的制造過程,由多晶硅 - 鎢硅化物構成的疊合型薄膜被廣泛應用于柵極、局部連線以及單元連線等關鍵部位。 傳統的高溫爐多晶硅沉積和化學氣相沉積(CVD)鎢硅化物工藝,在進行鎢硅化物沉積之
    的頭像 發表于 02-11 09:19 ?487次閱讀
    單晶圓系統:<b class='flag-5'>多晶硅</b>與氮化硅的沉積

    為什么采用多晶硅作為柵極材料

    本文解釋了為什么采用多晶硅作為柵極材料 ? 柵極材料的變化 ? 如上圖,gate就是柵極,柵極由最開始的鋁柵,到多晶硅柵,再到HKMG工藝的金屬柵極。 ? 柵極的作用 ? 柵極的主要作用是控制
    的頭像 發表于 02-08 11:22 ?579次閱讀
    為什么采用<b class='flag-5'>多晶硅</b>作為柵極材料

    多晶硅的存儲條件是什么

    在全球積極推動清潔能源轉型的大背景下,太陽能光伏產業蓬勃發展,而多晶硅作為光伏產業鏈的關鍵起始原料,其質量和性能直接關系到整個光伏系統的發電效率和穩定性。因此,了解并嚴格把控多晶硅的存儲條件顯得尤為重要。
    的頭像 發表于 12-27 09:22 ?767次閱讀

    多晶硅生產過程芯的作用

    ? ? ? ?多晶硅還原爐內,芯起著至關重要的作用。?? 在多晶硅的生長過程芯的表面會逐漸被新沉積的
    的頭像 發表于 11-14 11:27 ?789次閱讀

    多晶硅柵工藝的制造流程

    與亞微米工藝類似,多晶硅柵工藝是指形成 MOS器件的多晶硅柵極,柵極的作用是控制器件的關閉或者導通。淀積的多晶硅是未摻雜的,它是通過后續的源漏離子注入進行
    的頭像 發表于 11-07 08:58 ?1508次閱讀
    <b class='flag-5'>多晶硅</b>柵工藝的制造流程

    光伏多晶硅的分片方法及優缺點

    光伏多晶硅是一種用于制造太陽能電池的材料,其分片過程是將整塊的多晶硅切割成適合制造太陽能電池的小塊。這個過程對于提高太陽能電池的效率和降低成本至關重要。以下是一篇關于光伏多晶硅分片方法及其優缺點
    的頭像 發表于 09-20 11:26 ?1029次閱讀

    多晶硅柵耗盡效應簡述

    當柵與襯底之間存在壓差時,它們之間存在電場,靜電邊界條件使多晶硅靠近氧化界面附近的能帶發生彎曲,并且電荷耗盡,從而形成多晶硅柵耗盡區。該耗盡區會在多晶硅柵與柵氧化
    的頭像 發表于 08-02 09:14 ?5186次閱讀
    <b class='flag-5'>多晶硅</b>柵耗盡效應簡述