女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

闡明采用不同電解質的水系Zn/MnO2電池的反應機理

清新電源 ? 來源:清新電源 ? 2023-01-08 09:12 ? 次閱讀

研究背景

由于安全性和低成本,可逆水系Zn/MnO2電池(AZMOBs)成為一種有前途的電網級儲能替代方案。

近年來,由于需要充分了解其電荷存儲機制,以提高其效率和循環壽命,采用弱酸電解質的AZMOBs引起了人們的廣泛關注。

不同弱酸性電解質的AZMOBs中Mn的氧化還原機理目前仍存在爭議,主要有以下幾種:Zn2+/H+嵌入機制,Zn2+/H+嵌入誘導MnO2-ZnxMnOy/MnOOH轉換機制和Mnn+溶解?沉積機制。

最近,使用原位同步加速器X射線熒光譜(XFM)提供了MnO2溶解-沉積是ZnSO4電解質中主要的Mn氧化還原反應的直接實驗證據。然而,XFM方法無法提供結構信息,也無法提供固體正極或電解質內配位環境的演變信息。

成果簡介

鑒于此,石溪大學的Kenneth J. Takeuchi(通訊作者)等人利用Mn K邊XAS技術,對ZnSO4、Zn(CF3SO3)2和Zn(CH3COO)2水溶液的鋅電池的α-MnO2溶解-沉積氧化還原過程進行了實驗研究,此項技術能夠同時表征參與Mn氧化還原反應的液相和固相,最后闡明了采用不同電解質的水系Zn/MnO2電池的反應機理。

研究亮點

1、不同電解質(ZnSO4,Zn(CF3SO3)2和Zn(CH3COO)2)中,MnO2具有相似的錳配位環境,但固相和液相中Mnn+物種的定量分布存在差異;

2、拉曼光譜證明,在正極處,電荷作用下形成了結晶性差的含錳產物,并采用TEM對沉積物的形態和表面狀況進行了深入研究。

圖文介紹

8846dcb4-8ee0-11ed-bfe3-dac502259ad0.png

1 在ZnSO4、Zn(CF3SO3)2或Zn(CH3COO)2電解質中循環的(a)放電和(b)帶電正極與原始電極和碳納米管的同步X射線衍射圖。

采用基于同步輻射的XRD技術對不同電解質中循環至第一次放電和第一次充電的α-MnO2正極進行了表征(圖1)。

放電時,所有正極中都出現低于1°的強峰(圖1a紅色虛線框),表明形成了新相。以往文獻表明,ZnSO4,Zn(CF3SO3)2和Zn(CH3COO)2電解質中形成的新相分別為Zn4SO4(OH)6·xH2O(ZHS),Zn5(OH)8(CF3SO3)2·xH2O,(ZHT)和Zn5(OH)8(CH3COO)2·xH2O(ZHA)。

充電后正極的XRD圖譜中,ZHS、ZHA和ZHT峰消失,只留下原始材料的峰(圖1b),為未反應的α-MnO2。α-MnO2峰值強度較原始狀態電極的低,表明其質量分數降低。

8872d846-8ee0-11ed-bfe3-dac502259ad0.png

圖2 在(a,d)ZnSO4電解質、(b,e)Zn(CF3SO3)2電解質和(c,f)Zn(CH3COO)2電解質中放電的α-MnO2正極的透射電鏡表征顯示了α-MnO2棒和沉積的板狀材料的圖像(a-c)和板狀材料的衍射圖(d-f)。

在電池初次放電(圖2)和初次充電(圖3)后,采用TEM觀測了α-MnO2正極。在首次放電時,三種電解質中的α-MnO2納米棒在表面和棒的末端附近都顯示出溶解現象(圖2a?c),在納米棒旁邊還觀察到板狀沉淀物質。ZnSO4電解液中放電產物的衍射模式與已知結構羥基硫酸鋅(ZHS)匹配性很好(圖2d)。

8892be68-8ee0-11ed-bfe3-dac502259ad0.png

圖3 (a)ZnSO4,(b)Zn(CF3SO3)2和(c)Zn(CH3COO)2電解質中α-MnO2正極在首次充電循環后的TEM圖像顯示了充電過程中表面沉積的形成;(d-f)不同電解質下的嵌入功率譜。

ZnSO4、Zn(CF3SO3)2和Zn(CH3COO)2電解質中,第一個帶電電極的成像如圖3所示。三種電極類型的樣品均含有棒狀α-MnO2,電極表面鍍有電化學沉積物質,沉積的物質可能由含Zn/Mn相組成。

圖3d-f中,嵌入功率譜中的紅色圈出的信號對應于Zn/Mn相。且過濾HRTEM圖像表明,表面沉積物都優先排列在α-MnO2棒上。

88b04b90-8ee0-11ed-bfe3-dac502259ad0.png

圖4 (a)放電電極和(b)帶電電極的拉曼光譜;(c)未混合共聚焦拉曼數據集的NMF分量。對提取的信號組分進行識別,其中組分1為層狀相,組分2為錳鉀礦,組分3為殘留背景;(d)非原位電極表面已識別組分的空間分布圖。

從原始電極上收集的拉曼光譜顯示,僅有與α-MnO2相關的峰,出現在387、471、494、507、577和635 cm?1。

在ZnSO4、Zn(CH3COO)2和Zn(CF3SO3)2電解質中放電電極的拉曼光譜與原始電極和α-MnO2材料相似(圖4a),表明放電電極中存在未反應的殘余α-MnO2。

充電后,在667 cm?1附近出現了一個新峰,表明形成了層狀Zn?Mn?O相(圖4b)。

對拉曼數據集進行NMF分量,其中組分1為層狀相,類似于層狀鈣硬錳石(Ca,Mn2+)0.2(Mn4+,Mn3+)O2·0.6H2O或黑鋅錳礦ZnMn34+O7·3H2O。

通過比較不同電解質和充放電條件下層狀相(成分1)的NMF歸一化信號強度,可以觀察到層狀相僅在充電電極中存在,這表明在充電過程中形成層狀相,在放電過程中消失(圖4d)。

88ef2e82-8ee0-11ed-bfe3-dac502259ad0.png

圖5 使用LCF計算的(a)ZnSO4,(b)Zn(CF3SO3)2,(c)Zn(CH3COO)2的操作單元放電期間的平均Mn氧化態的電壓分布;(d)ZnSO4,(e)Zn(CF3SO3)2和(f)Zn(CH3COO)2電池的原位XANES演化。

對每次XANES掃描進行線性組合擬合(LCF),利用KMn8O16(s)值和相應的溶液Mn2+標準,獲得電池的平均Mn氧化態(OS)。

在放電期間,XANES的X射線吸收邊緣轉移到較低的能量處(圖5d?f),這種變化表明平均Mn氧化態的降低,與由LCF確定的Mn平均氧化態變化一致(圖5a?c)。

891a4f2c-8ee0-11ed-bfe3-dac502259ad0.png

圖6 使用LCF計算的(a)ZnSO4,(b)Zn(CF3SO3)2,(c)Zn(CH3COO)2的操作單元充電期間的平均Mn氧化態的電壓分布充電時(d)ZnSO4,(e)Zn(CF3SO3)2和(f) Zn(CH3COO)2電池的原位XANES演化

ZnSO4、Zn(CF3SO3)2和Zn(CH3COO)2電池在充滿電后對應的平均Mn氧化態值分別略低于原始材料值3.73、3.69和3.75。

這種氧化態變化歸因于充電產物與原始材料之間的結構和化學差異。如拉曼光譜表明,充電產物是層狀的鋅錳氧化物,這種材料通常由MnOx層組成,層間插入Zn2+離子。

與含有一價K+的原始α-MnO2相比,由于Zn2+的存在,使得放電產物具有較低的氧化態。

8945d584-8ee0-11ed-bfe3-dac502259ad0.png

圖7 (a)ZnSO4,(b)Zn(CF3SO3)2和(c)Zn(CH3COO)2電池放電期間,原位EXAFS在r空間的演化;(d)ZnSO4,(e)Zn(CF3SO3)2和(f)Zn(CH3COO)2電池在充電過程中相應的EXAFS演化

將原位EXAFS光譜傅里葉變換到徑向空間(r-空間),在r-空間中可以區分配位環境的變化。圖7顯示了在r-空間中初始放電和后續充電期間三個電池的原位EXAFS演化。

三種電池的r-空間EXAFS光譜具有相似的主峰。如圖7a所示,在~1.5 ?處的第一個主峰對應固體MnO2結構內的第一層Mn?O散射路徑,在~2.5 ?處的第二個主峰對應第二層Mn?Mn散射路徑,在~3.0 ?處的第三個主峰對應第三層Mn?Mn散射路徑。

第二層Mn-Mn散射路徑代表了MnO2結構中兩個共享邊的MnO6八面體的相對位置,而第三層Mn-Mn散射路徑代表了α-MnO2結構中兩個共享角的MnO6八面體的相對位置。

三個電池EXAFS光譜在初始放電過程中表現出相似的形狀,而始放電過程中,r空間峰值強度逐漸降低,并存在~1.9 ?處新峰的增長。與EXAFS標準Mn2+水溶液的對比表明,該峰可能對應于溶劑化[Mn(H2O)6]2+離子的第一層Mn?O散射路徑。

在充電時,除了第三層Mn-Mn峰外,所有的Mn-Mn峰都恢復到原始強度,三個電池的水Mn-O峰都消失了。

充電的α-MnO2與原始的α-MnO2在EXAFS光譜上的差異表明,在充電時,形成了一個具有不同于原始α-MnO2的Mn中心局部結構的產物。

896fb52a-8ee0-11ed-bfe3-dac502259ad0.png

圖8 XANES-LCF結果顯示(a)ZnSO4,(b)Zn(CF3SO3)2和(c)Zn(CH3COO)2電池在第一個循環中的溶液中/固相中Mn的質量分數。

Mn的溶解-沉積過程包括溶解的溶劑化Mn2+離子和固體MnOx。使用標準Mn2+水溶液,對相應的電池進行原始掃描,以獲得電化學還原和氧化過程中單元內的水和固體Mn質量分數(圖8)。

在三種電池的初始放電過程中收集的XAS光譜表明,LCF擬合的固體/水Mn的重量分數呈現與電化學過程相關的Mn溶解現象(圖8)。

在初始放電結束時,約50%的Mn從正極溶解形成Mn2+。在充電過程中,雖然大多數溶解的Mn2+以固體形式重新沉積,但少量的Mn2+仍未被氧化。

8999a0ba-8ee0-11ed-bfe3-dac502259ad0.png

圖9 (a)完全放電和(b)充滿電的電池掃描的EXAFS擬合結果;(c?e)EXAFS擬合時用于執行FEFF計算的理論結構。

采用EXAFS擬合方法,利用理論FEFF計算結構對含錳產物進行解析。[Mn(H2O)6]2+結構可以用[MnO6]理論結構很好地表示(圖9c)。

初始放電時,原始α-MnO2溶解在ZnSO4、Zn(CF3SO3)2或Zn(CH3COO)2電解質中形成水合[Mn(H2O)6]2+離子,未溶解的α-MnO2沒有改變其局部結構。

對于充電電池的原位EXAFS光譜,放電時出現的Mn2+峰消失了,只在前三個殼層上留下三個主要峰。除了第三層Mn-Mn峰明顯減少,這些光譜與原始物相掃描光譜相似(圖7)。

這表明在充電正極中,Mn的角共享[MnO6]八面體的數量顯著減少。精細EXAFS擬合結果表明,在充電過程中,大部分Mn2+會轉化為固態ZMO,而未反應的KMO在電池的充電過程中都沒有發生結構變化。

89b5fd14-8ee0-11ed-bfe3-dac502259ad0.png

10 (a-c)5個周期的CV結果和(d-f)10個周期的容量保持曲線;(g,h)ZnSO4、Zn(CF3SO3)2和Zn(CH3COO)2電池在10個周期內的電壓分布演變。

三個電池的初始放電都以一個平坦的電壓平臺開始,但它們的開路電壓不同,ZnSO4電池顯示出最高的電壓。為了證明三種電解質體系之間的電化學差異,測試了這三種體系的CV(圖10a?c)和循環圖(圖10d?i)。放電平臺的差異很可能是由于陰離子效應造成的。

CF3SO3-陰離子具有更高的靜電電位,因此與SO42-陰離子(MPI=10.47 eV)相比,CF3SO3-陰離子具有更低的分子極性指數(MPI)(4.68 eV),這導致CF3SO3-陰離子具有更高的疏水性。因此,SO42?陰離子傾向于與H2O結合,在正極表面附近形成富水環境,而CF3SO3?和CH3COO?陰離子傾向于吸附在正極上,形成貧水環境。

這種貧水環境為錳溶解所需的質子化過程產生動力學障礙,降低了放電電壓平臺。相應地,在充電過程中,CF3SO3?或CH3COO?電池中體積較大的陰離子會減少Mn2+離子周圍的H2O水分子數量,減輕溶劑化效應,從而增強電荷和離子轉移,降低電荷電壓平臺。

對于Zn(CH3COO)2電池,在10個周期內觀察到明顯的容量衰退。這可能是由于CH3COO?和Zn2+離子之間的強結合,導致CH3COO?在充電時從ZHA中緩慢提取,因此限制了Mn2+插入到ZHA中,最終抑制了Mn的沉積。

總結與展望

本文采用Mn K邊原位XAS技術,對ZnSO4、Zn(CF3SO3)2和Zn(CH3COO)2水溶液鋅電池的α-MnO2溶解-沉積氧化還原過程進行了實驗研究。

EXAFS數據的分析采用了多相方法,分析了固態和溶解的過渡金屬成分。結果表明:三種弱酸性電解質的錳溶解-沉積過程具有相似的配位環境,但錳在固相和溶液中的分布不同

原位XAS表征方法可以獨立研究固相或電解質中的反應。該方法為在復雜環境中對結晶性差的多相材料的表征提供了一種實用方法。









審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 加速器
    +關注

    關注

    2

    文章

    823

    瀏覽量

    38918
  • 電解質
    +關注

    關注

    6

    文章

    821

    瀏覽量

    20599
  • XRD
    XRD
    +關注

    關注

    0

    文章

    133

    瀏覽量

    9863

原文標題:JACS:闡明Zn/MnO2電池中固液錳環境

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    清華大學:自由空間對硫化物固態電解質表面及內部裂紋處鋰沉積行為的影響

    全性的全固態鋰金屬電池的最具潛力的候選電解質材料之一。 盡管如此,仍有大量研究表明,即使在較低的電流密度下(0.5-1 mA/cm2),全固態金屬鋰電池中鋰枝晶穿透硫化物固態
    的頭像 發表于 02-14 14:49 ?359次閱讀
    清華大學:自由空間對硫化物固態<b class='flag-5'>電解質</b>表面及內部裂紋處鋰沉積行為的影響

    馬里蘭大學王春生教授團隊最新研究成果:探索水系電池電解質設計

    2?溶劑化殼層中水的還原引起,會生成氫氣,加速Zn表面副反應Zn沉積的非均勻性則易導致枝晶生長,進而損壞電極界面。 成果簡介 基于此,馬里蘭大學王春生教授團隊提出了一種基于 Et(30) 極性參數 的
    的頭像 發表于 02-10 10:19 ?562次閱讀
    馬里蘭大學王春生教授團隊最新研究成果:探索<b class='flag-5'>水系</b>鋅<b class='flag-5'>電池</b>的<b class='flag-5'>電解質</b>設計

    研究論文::乙烯碳酸酯助力聚合物電解質升級,提升高電壓鋰金屬電池性能

    1、 導讀 >> ? ? 該研究探討了乙烯碳酸酯(VC)添加劑在聚丙烯酸酯(PEA)基固態聚合物電解質中的作用。結果表明,VC添加劑顯著提升了電解質的鋰離子電導率和遷移數,同時提高了鋰金屬負極和高
    的頭像 發表于 01-15 10:49 ?568次閱讀
    研究論文::乙烯碳酸酯助力聚合物<b class='flag-5'>電解質</b>升級,提升高電壓鋰金屬<b class='flag-5'>電池</b>性能

    陳軍院士團隊最新Angew,聚合物電解質新突破

    研究背景 固態鋰金屬電池(SSLMBs)因其高的能量密度和優異的安全性能在能源存儲領域受到廣泛關注。然而,現有固態電解質(SSEs)普遍存在離子傳導性差、電極界面穩定性不足等問題,極大地限制了其實
    的頭像 發表于 01-06 09:45 ?683次閱讀
    陳軍院士團隊最新Angew,聚合物<b class='flag-5'>電解質</b>新突破

    鎂合金犧牲陽極與電解質接觸不良的原因

    一、埋設深度不足 鎂陽極的埋設深度決定了其與周圍電解質的接觸面積和接觸質量。如果埋設深度不足,陽極可能與電解質的接觸不良,導致保護電流分布不均,影響保護效果。特別是在地下水位較低或土壤干燥的區域
    的頭像 發表于 01-02 21:00 ?247次閱讀
    鎂合金犧牲陽極與<b class='flag-5'>電解質</b>接觸不良的原因

    Li3MX6全固態鋰離子電池固體電解質材料

    ? ? 研究背景 Li3MX6族鹵化物(M = Y、In、Sc等,X =鹵素)是新興的全固態鋰離子電池固體電解質材料。與現有的硫化物固體電解質相比,它們具有更高的化學穩定性和更寬的電化學穩定窗口
    的頭像 發表于 01-02 11:52 ?834次閱讀
    Li3MX6全固態鋰離子<b class='flag-5'>電池</b>固體<b class='flag-5'>電解質</b>材料

    一種薄型層狀固態電解質的設計策略

    研 究 背 景 用固態電解質(SSE)代替有機電解液已被證明是克服高能量密度鋰金屬電池安全性問題的有效途徑。為了開發性能優異的全固態鋰金屬電池(ASSLMB),SSE通常需要具備均勻且
    的頭像 發表于 12-31 11:21 ?688次閱讀
    一種薄型層狀固態<b class='flag-5'>電解質</b>的設計策略

    半互穿網絡電解質用于高電壓鋰金屬電池

    研究背景 基于高鎳正極的鋰金屬電池的能量密度有望超過400 Wh kg-1,然而在高電壓充電時,高鎳正極在高度去鋰化狀態下,Ni4+的表面反應性顯著增強,這會催化正極與電解質界面之間的有害副
    的頭像 發表于 12-23 09:38 ?788次閱讀
    半互穿網絡<b class='flag-5'>電解質</b>用于高電壓鋰金屬<b class='flag-5'>電池</b>

    水系電解液寬電壓窗口設計助力超長壽命水系鈉離子電池

    【研究背景】水系鈉離子電池(ASIBs)具有高安全、低成本、快速充電等優點,在大規模儲能中顯示出巨大的潛力。然而,傳統的低濃度水系電解液(salt-in-water electroly
    的頭像 發表于 12-20 10:02 ?1353次閱讀
    <b class='flag-5'>水系</b><b class='flag-5'>電解</b>液寬電壓窗口設計助力超長壽命<b class='flag-5'>水系</b>鈉離子<b class='flag-5'>電池</b>

    通過電荷分離型共價有機框架實現對鋰金屬電池固態電解質界面的精準調控

    (-3.04 V vs SHE),被認為是次世代電池的最優選擇。然而,鋰金屬負極的實際應用面臨諸多挑戰,其中最關鍵的問題是鋰枝晶的生長和副反應的發生。這些問題不僅會導致電池壽命急劇下降,還會引發嚴重的安全隱患,如短路和熱失控。
    的頭像 發表于 11-27 10:02 ?835次閱讀
    通過電荷分離型共價有機框架實現對鋰金屬<b class='flag-5'>電池</b>固態<b class='flag-5'>電解質</b>界面的精準調控

    胡先羅教授在AEM發表研究:探索寬溫電解質設計新路徑

    的溶劑是高溫電解質的理想選擇。在評估的溶劑中,正硅酸四乙酯 (TEOS) 被確定為合適的選擇,并用于配制局部高濃度電解質。該工作以“Solvent Descriptors Guided
    的頭像 發表于 11-08 11:06 ?669次閱讀
    胡先羅教授在AEM發表研究:探索寬溫<b class='flag-5'>電解質</b>設計新路徑

    一種創新的超薄固體聚合物電解質

    傳統液態電解質在鋰離子電池中的應用,盡管廣泛,但在極端環境條件下可能不可避免地面臨泄漏、燃燒乃至爆炸的風險,這些安全隱患顯著制約了其更為廣泛的部署。
    的頭像 發表于 11-01 10:31 ?1159次閱讀
    一種創新的超薄固體聚合物<b class='flag-5'>電解質</b>

    全固態鋰金屬電池的鋰陽極夾層設計

    全固態鋰金屬電池(ASSLB)由于其高能量密度和高安全性而引起了人們的強烈興趣,鋰金屬被認為是一種非常有前途的負極材料。然而,由于鋰金屬的高反應活性,鋰金屬很容易與液體電解質發生不可逆的副反應
    的頭像 發表于 10-31 13:45 ?618次閱讀
    全固態鋰金屬<b class='flag-5'>電池</b>的鋰陽極夾層設計

    固態電池中復合鋰陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態鋰金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲能領域具有很大的應用前景。
    的頭像 發表于 10-29 16:53 ?986次閱讀
    固態<b class='flag-5'>電池</b>中復合鋰陽極上固體<b class='flag-5'>電解質</b>界面的調控

    無極電容器有電解質嗎,無極電容器電解質怎么測

    無極電容器通常存在電解質電解質在無極電容器中起著重要作用,它可以增加電容器的電容量和穩定性。然而,電解質也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發表于 10-01 16:45 ?726次閱讀