女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

平衡高能物理界的性能和需求

星星科技指導員 ? 來源:嵌入式計算設計 ? 作者:Brandon Lewis,Chad ? 2022-08-16 09:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

高能物理社區利用 PICMG 的 MicroTCA.4 硬件標準在 DESY 等粒子加速器上進行定時和同步、數據采集和控制。但隨著這些研究中心實驗的推進,支持系統的性能必須不斷發展。MicroTCA 等標準如何支持前沿用例的需求并保持適用于更廣泛的市場?

位于漢堡的 DESY 研究中心擁有 PETRA 等圓形加速器和世界上最長的線性粒子加速器 2.1 英里 XFEL。這些系統用于研究量子粒子、薄膜化學反應、繪制 COVID-19 等病毒結構圖等物理實驗。

說支持這些加速器的電子設備很復雜是輕描淡寫的。例如,XFEL 每秒 10 次以 4.5 MHz 的重復頻率產生 2,700 個 X 射線脈沖(圖 1)。這意味著激光每秒發射 27,000 個脈沖,其亮度比傳統 X 射線高出多個數量級。成像探測器從這些爆炸中捕獲 10 GBps 的數據,以支持測量小至 0.05 nm 的原子級波長并需要飛秒分辨率的實驗。

pYYBAGL69JiAeQqQAABJA9bkEmU680.png

[圖 1. XFEL X 射線以 4.5 MHz 的重復頻率產生 2,700 個 X 射線脈沖,每秒 10 次。]

管理 XFEL、Karabo 的控制系統由 DESY 工程師內部開發。但 Karabo 靈敏的計時、測量和前端數據采集平臺背后的快速電子設備是一個開放的行業標準:MicroTCA.4 (μTCA.4)。

“XFEL 完全由 μTCA 控制——所有快速電子設備,”負責圍繞 μTCA 標準化 DESY 加速器控制系統的工程師 Kay Rehlich 說?!斑€有很多其他系統涉及較慢的東西,但快速動態光束的東西,如高精度定時、機器保護、診斷和射頻——所有這些都是在 μTCA 中完成的?!?/p>

有超過 35 μTCA.4 系統分布在 XFEL 數英里長的范圍內。μTCA 平臺最初設計為電信級解決方案,由于集成了可靠性功能,如遠程監控和控制、自動故障檢測以及冗余冷卻和電源,因此可以 24/7 全天候運行一年或更長時間。

μTCA 機箱接受稱為 AdvancedMC (AMC) 的插卡,它支持一系列模塊化功能。在 DESY,AMC 托管用于數字化、同步和處理數據的 FPGA。然后數據通過背板的高速 PCIe 和以太網互連發送到系統外,以控制服務器和其他設備。

對于高能物理應用的更具體需求,.4 擴展還支持特殊的時鐘和觸發拓撲。在 XFEL 定時系統中,這提供了參考頻率來調整采樣率并確定性地分布 X 射線激光器的脈沖模式信息。

μTCA 基本規范中不存在的后轉換模塊 (RTM) 插入機箱背面的 AMC 對面,以支持物理應用的額外 I/O 要求(圖 3)。

pYYBAGL69J6AMNUGAAEN7VE__Jw042.png

[圖 3. MicroTCA.4 擴展規范添加了以物理為中心的功能,例如支持額外 I/O 的后轉換模塊 (RTM)。]

MicroTCA,滿足現代要求

盡管該系統非常復雜,但時間在流逝,XFEL 是在 10 多年前設計和實施的。這包括成像探測器,它每秒拍攝加速器的 27,000 個 X 射線脈沖。

“驅動數據最多的系統是大型 2D 圖像探測器,它們基本上拍攝 X 射線圖像,”負責歐洲 XFEL 加速器的電子和電氣工程組負責人 Patrick Gessler 博士說。“這些探測器一次只能拍攝 350 到 800 張圖像,但它們仍能產生大約 10 GBps 的數據。

“我們已經無法可視化在 10 赫茲周期內生成的數百張圖像,”Gessler 解釋說。“現在新的 3D 技術即將面世。這自然意味著我們必須處理越來越多的數據。

“還有不同種類的檢測器,稱為 0D 檢測器,它們只是具有多個通道的 ADC 或數字化儀,”他繼續說道?!澳壳?,我們擁有高達 10 GSps 的數字化儀系統,但實驗者希望超越這一點,并在很多很多通道上擁有更高的垂直分辨率。”

數據不會在 μTCA 機箱中收集,只是數字化并傳輸到托管服務器,來自世界各地的科學家可以在那里對其進行分析。但是 μTCA 是端到端系統中的一個數據管道——當 DESY 安裝可能需要 TBps 傳輸速度的下一代探測器時,它可能會爆裂。

“我們在 μTCA 系統中使用 CPU 來控制 AMC,同時也從它們那里獲取數據。我們進行一些預處理,然后將其發送出去,如果是數據,通常通過 10 GbE 或 1 GbE 進入控制系統,”Gessler 繼續說道?!斑@意味著目前的瓶頸是 10 GbE,因為它是我們從 μTCA 板條箱中獲得的最高速度?!?/p>

當標準不是那么簡單時

μTCA 基本規范的 2.0 版目前支持 40GBASE-KR4,以通過背板提供峰值 40 Gbps 數據傳輸。但是 40GBASE-KR4 只是四個 10GBASE-KR 通道的集合,因此從端口密度的角度來看,它實際上并沒有提高帶寬。

這并不意味著沒有選擇。例如,英特爾今年早些時候終于在其第 11 代芯片組上發布了對 PCIe Gen 4 的支持,該芯片組在 16 條通道上提供高達 32 GBps 的數據傳輸。五年多來,25GBASE-T 通道已組合形成 100 GbE AdvancedTCA 系統,即 μTCA 的老大哥。在電氣背板技術方面,這些技術都不是最先進的:

PCIe Gen 5 規范于 2019 年完成

2014 年 IEEE 標準化 100 Gbps 銅跡線以太網

PAM4 信令現已在能夠以 56 Gbps 和 112 Gbps 數據速率傳輸 PCIe 或以太網信號的互連解決方案中商用。

根據 Rehlich 的說法,DESY 及其合作伙伴目前正在運行模擬,并且“非常確定我們可以使用 4 個 25 Gbps 通道和 PCIe Gen 4 實現 100 GbE”。從表面上看,這將在不完全修改 μTCA 標準的情況下提供一定程度的帶寬緩解。但這只是表面。

“如果您想要更快的通信,無論是 PCI Express Gen 4 或 5 還是 100G 以太網,您都需要控制所有 μTCA 通信的板條箱中的開關,”Rehlich 解釋說?!斑@些將消耗比我們現在在定義的每個 AMC 插槽 80 W 中所能提供的更多的功率?!?/p>

研究中心的工程師正在考慮將 μTCA 系統總功耗增加一倍至 2 kW。這不僅可以實現網絡交換,還可以使用可用于執行 AI 的高性能 FPGA 和 GPU 計算解決方案。

然而,這就是事情開始瓦解的地方。第一個問題是這些更高性能的計算和連接解決方案產生的串擾會對更敏感的車載電子設備產生負面影響。

“如果我們還想將它用于非常敏感的信號,我不確定μTCA 板條箱中有多少處理和超高速系統是有價值的,”Gessler 說?!拔覀冊诎鍡l箱中直接安裝了數字化儀,可以接收敏感的低壓模擬信號。風險可能是,如果你將非常強大的計算系統與非常高的速度和許多非常敏感的信號結合在一個非常緊湊的機箱上,你最終可能會妥協其中一個,對嗎?”

所有這些都應該在同一個系統中嗎?更進一步,對于這個用例來說,標準甚至是正確的選擇嗎?

當標準成熟時:平衡市場需求

DESY 的情況是行業標準的少數缺點之一,即需要達成某種程度的共識。一般來說,推動行業標準達成共識的是市場。對接誰的市場?

μTCA 標準服務于具有較長生命周期要求的市場,例如工業控制、網絡基礎設施以及測試和測量。更長的部署周期意味著在給定的時間內準備升級的套接字更少,因此臨界質量需要更長的時間才能圍繞某些技術要求增長。

同時,與許多其他板級和系統級標準一樣,該標準的設計考慮了 x86 架構。如前所述,英特爾的第 11 代處理器是第一個支持 PCIe Gen 4 的處理器,這標志著英特爾服務器(第二代 Sandy Bridge)和臺式機(第三代 Ivy Bridge)芯片組上引入 PCIe Gen 3 已有十年。

盡管如此,所有這些應用程序和芯片組推進到當前最先進的技術(例如 PCIe Gen 5 和通過某種類型的背板實現 100+ GbE 速度)只是時間問題。如果像 μTCA 這樣的標準要繼續下去,像高能物理這樣的標準必須推動它達到這些性能水平。

Jan Marjonovic 是 DESY MicroTCA 技術實驗室的高級 FPGA 開發人員,該研究所的一個部門旨在“為 MicroTCA 尋找新的用例,并成為其他機構和公司的服務提供商”。Marjonovic 表示,從 DESY 的角度來看,目標是“擴大安裝基礎,擴大用戶群,然后向社區尋求幫助”。

雖然高能物理市場是最活躍的 μTCA 社區之一,但就出貨量而言,它是一個較小的市場。話雖如此,他們在粒子加速器、量子計算儀器、原子聚變和裂變設備等方面的總投資高達數十億美元,而使用像 μTCA 這樣的標準有助于保護這些投資。

也就是說,如果像 μTCA 這樣的標準可以繼續支持他們的需求。

“μTCA.4 一直是一個小眾產品,而且它仍將是一個小眾產品,”Marjonovic 說?!暗绻?DESY 是唯一使用 μTCA 的人,這將不是一個標準。至少有 20 或 30 家機構已經在使用它,當你去車間時,那里有很多人。

“至少,有一個足夠大的市場來維持迎合物理市場的技術供應商。這已經是第一個里程碑,”他繼續說道?!拔锢韺W界需要自己的標準,以便公司可以合作和共同建設?!?/p>

加速器可以加速標準嗎?

VadaTech、NAT Europe、Samtec 等 μTCA 技術供應商都積極參與了前面提到的全通道仿真,以確定 μTCA 系統中更高功率和更高速度互連的可行性。當然,運行測試和實施新的業務、工程和制造策略是兩件不同的事情。如果您正在等待市場趕上該技術,則尤其如此。當您處理旨在支持互操作性以及在一定程度上支持向后兼容性的標準時,情況更是如此。

DESY 工程師和物理界的其他成員了解這一點,并在維護它方面擁有既得利益。畢竟,Rehlich 指出,“選擇 μTCA 的原因之一是所有非常不同的子系統都可以使用相同的標準,從而簡化軟件開發。如果你有一個統一的、標準化的系統,那么你也可以比擁有一個異構系統更好地標準化你的軟件和固件?!?/p>

但是,當標準成熟,市場面臨平衡性能和需求時,如何以及何時向前發展是必須回答的問題。

“在最壞的情況下,我們會采取中間步驟,”Rehlich 說。“我們可以進行 4x 25 GbE 和 PCIe Gen 4,同時我們為更新的 μTCA.4 規范制定所有定義并定義協議。今年我們可以解決這個問題。

“我們希望將其作為一個可行的標準,因此我們必須遵循技術正在做的事情以及這些天的 CPU。英特爾 CPU 提供 PCI Express Gen 4,因此板條箱應該能夠做到這一點,”他解釋道。“現在 FPGA 具有更高的功率和更高的性能,所以我認為必須遵循標準。

“現在不是制定全新標準的時候,”控制系統資深人士繼續說道?!爱斘覀冊诒嘲迳线M行光通信時,這是生成全新標準的好時機,但這種技術尚不可用。所以,我認為我們必須遵守我們必須確保的標準,以確保人們不會失去他們對技術的投資,他們購買的所有電子產品,當然還有知識?!?/p>

作者:Brandon Lewis,Chad Cox

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19890

    瀏覽量

    235148
  • 英特爾
    +關注

    關注

    61

    文章

    10195

    瀏覽量

    174669
  • 服務器
    +關注

    關注

    13

    文章

    9793

    瀏覽量

    87957
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    Pico Technology推出新款高帶寬采樣示波器

    作為基于PC測試和測量儀器市場領導者的 Pico Technology, 非常自豪地宣布推出其 PicoScope 9400A 系列高帶寬采樣示波器的擴展產品。該產品的設計是為了滿足人們對高速電子、通信、半導體研究以及各種高能物理應用的日益迫切的需求。
    的頭像 發表于 07-02 16:49 ?729次閱讀
    Pico Technology推出新款高帶寬采樣示波器

    粒子加速器?——?科技前沿的核心裝置

    粒子加速器全稱“荷電粒子加速器”,是一種利用電磁場在高真空環境中對帶電粒子(如電子、質子、離子)進行加速和控制,使其獲得高能量的特種裝置。粒子加速器技術現已發展成為集高能物理、核物理、材料科學
    的頭像 發表于 06-19 12:05 ?518次閱讀
    粒子加速器?——?科技前沿的核心裝置

    中科曙光助力中科院高能物理研究所打造溪悟大模型

    近年來,以大規模預訓練模型為代表的人工智能技術迅猛發展,為科研創新提供了全新范式。中科院高能物理研究所依托正負電子對撞機等大科學裝置,積累了海量高價值實驗數據,如何高效利用數據、加速成果產出,成為研究所面臨的核心課題。
    的頭像 發表于 05-06 15:19 ?334次閱讀

    UACHV225S高壓AC-DC電源模塊現貨庫存

    ,且實現了全封裝設計,兼具高可靠性和高效率。UACHV225S特別適用于高電壓輸入與穩定輸出的應用場景,例如軍工制造、精密儀表、高能物理研究以及醫療設備等領域。 產品規格 輸入電壓:支持85至
    發表于 03-05 09:24

    上海光機所在高能量深紫外激光研究方面取得進展

    圖1 KDP家族晶體產生深紫外激光特性分析 近日,中國科學院上海光學精密機械研究所高功率激光物理聯合實驗室在高能量深紫外激光產生研究方面取得新進展,相關研究成果以Deep-UV laser
    的頭像 發表于 03-03 09:08 ?348次閱讀
    上海光機所在<b class='flag-5'>高能</b>量深紫外激光研究方面取得進展

    飛騰主板——滿足高能效和安全可信需求

    在信息技術飛速發展的今天,主板作為計算機的核心部件,其性能和安全性至關重要。飛騰主板以其卓越的高能效和安全可信特性,在眾多主板產品中脫穎而出,成為滿足當今時代需求的理想選擇。
    的頭像 發表于 02-20 08:45 ?364次閱讀

    B0430J50100AHF超小型不平衡平衡變壓器

    輸入輸出需求而設計。B0430J50100AHF采用了便捷的表面貼裝封裝方式,工作頻率覆蓋400 MHz至3000 MHz的廣泛范圍。B0430J50100AHF在規?;a中表現出色,其性能超越了傳統
    發表于 02-08 09:26

    平衡電阻器可以改為不平衡

    在電子電路中,平衡電阻器與不平衡電阻器各自扮演著重要的角色。平衡電阻器主要用于實現電路的平衡和穩定性,減少噪音和干擾,提高信號質量。而不平衡
    的頭像 發表于 01-30 14:31 ?1169次閱讀

    RIGOL高能粒子物理實驗數據采集系統的應用案例

    高能物理實驗中,PMT作為粒子探測器的重要組成部分,廣泛應用于各種實驗裝置中。例如,PMT可以用于測量帶電粒子的軌跡和能量,通過精確測量粒子在磁場中的飛行時間和偏轉角度,可以推算出粒子的質量、電荷
    的頭像 發表于 01-17 16:40 ?675次閱讀
    RIGOL<b class='flag-5'>高能</b>粒子<b class='flag-5'>物理</b>實驗數據采集系統的應用案例

    首個科學計算基座大模型BBT-Neutron開源,助力突破大科學裝置數據分析瓶頸

    大語言模型能否解決傳統大語言模型在大規模數值數據分析中的局限性問題,助力科學界大科學裝置設計、高能物理領域科學計算? 高能物理是探索宇宙基本組成與規律的前沿科學領域,研究粒子在極高能量下的相互作用
    的頭像 發表于 12-26 15:29 ?678次閱讀
    首個科學計算基座大模型BBT-Neutron開源,助力突破大科學裝置數據分析瓶頸

    能源發布全球首創480Wh/kg高能量鋰金屬固態電池

    近日,欣能源在深圳隆重舉行了“獵鷹”高能量鋰金屬固態電池全球發布會。此次發布會不僅吸引了眾多業內人士的關注,更標志著新能源領域的一項重要突破。 據介紹,欣能源此次發布的“獵鷹”電池為全球首創
    的頭像 發表于 11-22 13:37 ?811次閱讀

    測試功放性能時輸入是需要選擇平衡輸入還是非平衡輸入?

    各位大俠,以下測試問題請教一下:1)測試功放性能時輸入是需要選擇平衡輸入還是非平衡輸入?這個是什么含義?2)如果是單通道輸入,需要測試“相位”這一項嗎?3)測試諧波失真時主要看THD還是THD+N?如果THD很小,THD+N偏
    發表于 11-04 08:35

    解決方案丨PPEC inside車載逆變器,車載高能耗設備需求的理想之選

    ,是滿足車載高能耗設備需求的理想車載電源解決方案。該方案已通過多家客戶項目檢驗,并獲得了用戶的高度認可。 PPEC車載逆變器拓撲框圖如下: 二、產品特色 ▍快速交付:繼承PPEC控制芯片免代碼開發
    發表于 09-27 18:13

    三星CL22B系列大容量電容:滿足高能量存儲需求

    關于這類電容可能具備的特點和它們如何滿足高能量存儲需求的概述: 1、大容量設計:CL22B系列電容很可能以其大容量為特點,這意味著它們能夠存儲更多的電能,從而在需要時能夠提供更長時間的電力支持或更強大的瞬時電流輸出。這對于
    的頭像 發表于 07-26 14:10 ?585次閱讀
    三星CL22B系列大容量電容:滿足<b class='flag-5'>高能</b>量存儲<b class='flag-5'>需求</b>

    如何解決射頻功放阻抗不匹配問題

    提到射頻功放,其實不只是EMC領域會用,無線通訊,半導體芯片,醫療,高能物理等領域都會用到,各有各的不同使用場景,不同的要求和用法。
    的頭像 發表于 07-18 11:22 ?2115次閱讀
    如何解決射頻功放阻抗不匹配問題