女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

模型復(fù)雜性日益增加,AI優(yōu)化的硬件隨之出現(xiàn)

FPGA之家 ? 來源:英特爾FPGA ? 作者:英特爾FPGA ? 2021-06-16 17:00 ? 次閱讀

人工智能AI)模型的規(guī)模和復(fù)雜度以每年大約 10 倍的速度不斷增加,AI 解決方案提供商面臨著巨大的壓力,他們必須縮短產(chǎn)品上市時間,提高性能,快速適應(yīng)不斷變化的形勢。模型復(fù)雜性日益增加,AI 優(yōu)化的硬件隨之出現(xiàn)。

例如,近年來,圖形處理單元(GPU)集成了 AI 優(yōu)化的算法單元,以提高 AI 計算吞吐量。然而,隨著 AI 算法和工作負載的演變與發(fā)展,它們會展現(xiàn)出一些屬性,讓我們難以充分利用可用的 AI 計算吞吐量,除非硬件提供廣泛的靈活性來適應(yīng)這種算法變化。近期的論文表明,許多 AI 工作負載都難以實現(xiàn) GPU 供應(yīng)商報告的全部計算能力。即使對于高度并行的計算,如一般矩陣乘法(GEMM),GPU 也只能在一定規(guī)模的矩陣下實現(xiàn)高利用率。因此,盡管 GPU 在理論上提供較高的 AI 計算吞吐量(通常稱為“峰值吞吐量”),但在運行 AI 應(yīng)用時,實際性能可能低得多。

FPGA 可提供一種不同的 AI 優(yōu)化的硬件方法。與 GPU 不同,F(xiàn)PGA 提供獨特的精細化空間可重構(gòu)性。這意味著我們可以配置 FPGA 資源,以極為準確的順序執(zhí)行精確的數(shù)學(xué)函數(shù),從而實施所需的操作。每個函數(shù)的輸出都可以直接路由到需要它的函數(shù)的輸入之中。這種方法支持更加靈活地適應(yīng)特定的 AI 算法和應(yīng)用特性,從而提高可用 FPGA 計算能力的利用率。此外,雖然 FPGA 需要硬件專業(yè)知識才能編程(通過硬件描述語言),但專門設(shè)計的軟核處理單元(也就是重疊結(jié)構(gòu)),允許 FPGA 以類似處理器的方式編程。FPGA 編程完全通過軟件工具鏈來完成,簡化了任何特定于 FPGA 的硬件復(fù)雜性。

FPGA與GPU架構(gòu)的背景

2020 年,英特爾 宣布推出首款 AI 優(yōu)化的 FPGA — 英特爾 Stratix 10 NX FPGA 器件。英特爾 Stratix 10 NX FPGA 包括 AI 張量塊,支持 FPGA 實現(xiàn)高達 143 INT8 和 286 INT4 峰值 AI 計算 TOPS 或 143 塊浮點 16(BFP16)和 286 塊浮點 12(BFP12)TFLOPS。最近的論文表明,塊浮點精度可為許多 AI 工作負載提供更高的精度和更低的消耗。NVIDIA GPU 同樣也提供張量核。但從架構(gòu)的角度來看,GPU 張量核和 FPGA AI 張量塊有很大的不同,如下圖所示。

GPU 和 FPGA 都有張量核心。FPGA 有可以在數(shù)據(jù)流內(nèi)外編織的軟邏輯

(左)GPU 數(shù)據(jù)從張量核心處理的內(nèi)存系統(tǒng)中讀取,寫回內(nèi)存系統(tǒng)。(右)FPGA 數(shù)據(jù)可以從內(nèi)存中讀取,但數(shù)據(jù)流可以并行安排到一個或多個張量核心。任意數(shù)量的張量核心都能以最小的傳輸開銷使用輸出。數(shù)據(jù)可以被寫回內(nèi)存或路由到其他任何地方

英特爾研究人員開發(fā)了一種名為神經(jīng)處理單元(NPU)的 AI 軟處理器。這種 AI 軟處理器適用于低延遲、低批量推理。它將所有模型權(quán)重保持在一個或多個連接的 FPGA 上以降低延遲,從而確保模型持久性。

NPU 重疊架構(gòu)和用于編程 NPU 軟核處理器的前端工具鏈高級概述

FPGA與GPU性能比較

本次研究的重點是計算性能。下圖比較了英特爾 Stratix 10 NX FPGA 上的 NPU 與 NVIDIA T4 和 V100 GPU 運行各種深度學(xué)習(xí)工作負載的性能,包括多層感知器(MLP)、一般矩陣向量乘法(GEMV)、遞歸神經(jīng)網(wǎng)絡(luò)(RNN)、長期短期記憶(LSTM)和門控循環(huán)單元(GRU)。GEMV 和 MLP 由矩陣大小來指定,RNN、LSTM 和 GRU 則通過大小和時間步長來指定。例如,LSTM-1024-16 工作負載表示包含 1024x1024 矩陣和 16 個時間步長的 LSTM。

NVIDIA V100 和 NVIDIA T4 與英特爾 Stratix 10 NX FPGA 上的 NPU 在不同批處理規(guī)模下的性能。虛線顯示 NPU 在批次大小可被 6 整除情況下的性能

從這些結(jié)果可以充分地看出,英特爾 Stratix 10 NX FPGA 不僅可以在低批次實時推理時實現(xiàn)比 GPU 高一個數(shù)量級的性能,還可以有效地進行高批次實時推理。

由于架構(gòu)上的差異和靈活編程模型,英特爾 Stratix 10 NX FPGA 還可實現(xiàn)更出色的端到端性能。不會產(chǎn)生與 GPU 相同的開銷。

短序列和長序列時 RNN 工作負載的系統(tǒng)級執(zhí)行時間(越低越好)

結(jié)論

英特爾 Stratix 10 NX FPGA 采用高度靈活的架構(gòu),所實現(xiàn)的平均性能比 NVIDIA T4 GPU 和 NVIDIA V100 GPU 分別高 24 倍和 12 倍。

由于其較高的計算密度,英特爾 Stratix 10 NX FPGA 可為以實際可達到性能為重要指標的高性能、延遲敏感型 AI 系統(tǒng)提供至關(guān)重要的功能。

原文標題:實際性能超過GPU,英特爾?Stratix?10 NX FPGA如何助您在AI加速領(lǐng)域贏得先機?

文章出處:【微信公眾號:FPGA之家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1643

    文章

    21957

    瀏覽量

    614028
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    10166

    瀏覽量

    173924
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    34182

    瀏覽量

    275341

原文標題:實際性能超過GPU,英特爾?Stratix?10 NX FPGA如何助您在AI加速領(lǐng)域贏得先機?

文章出處:【微信號:zhuyandz,微信公眾號:FPGA之家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    RAKsmart服務(wù)器如何賦能AI開發(fā)與部署

    AI開發(fā)與部署的復(fù)雜性不僅體現(xiàn)在算法設(shè)計層面,更依賴于底層基礎(chǔ)設(shè)施的支撐能力。RAKsmart服務(wù)器憑借其高性能硬件架構(gòu)、靈活的資源調(diào)度能力以及面向AI場景的深度
    的頭像 發(fā)表于 04-30 09:22 ?171次閱讀

    首創(chuàng)開源架構(gòu),天璣AI開發(fā)套件讓端側(cè)AI模型接入得心應(yīng)手

    模型全鏈路分析功能,針對AI應(yīng)用開發(fā)的三大痛點逐個擊破。 當前AI應(yīng)用開發(fā)者在使用開發(fā)工具時會面臨一個很頭疼的問題,種類多、功能不聚合、過于碎片化,導(dǎo)致開發(fā)過程非常復(fù)雜。Neuron
    發(fā)表于 04-13 19:52

    Marvell展示2納米芯片3D堆疊技術(shù),應(yīng)對設(shè)計復(fù)雜性挑戰(zhàn)!

    隨著現(xiàn)代科技的迅猛發(fā)展,芯片設(shè)計面臨著前所未有的挑戰(zhàn)。特別是在集成電路(IC)領(lǐng)域,隨著設(shè)計復(fù)雜性增加,傳統(tǒng)的光罩尺寸已經(jīng)成為制約芯片性能和功能擴展的瓶頸。為了解決這一問題,3D堆疊技術(shù)應(yīng)運而生
    的頭像 發(fā)表于 03-07 11:11 ?430次閱讀
    Marvell展示2納米芯片3D堆疊技術(shù),應(yīng)對設(shè)計<b class='flag-5'>復(fù)雜性</b>挑戰(zhàn)!

    了解DeepSeek-V3 和 DeepSeek-R1兩個大模型的不同定位和應(yīng)用選擇

    極點。 2. 電路代碼生成 Synopsys VerilogGPT (需企業(yè)授權(quán)) 專為硬件描述語言(HDL)優(yōu)化模型,生成可綜合的Verilog/VHDL代碼,避免R1可能出現(xiàn)的語
    發(fā)表于 02-14 02:08

    中興通訊AiCube:破解AI模型部署難題

    AI領(lǐng)域,DeepSeek等國產(chǎn)模型憑借算法優(yōu)化,成功將訓(xùn)練與推理的綜合成本降低了40%以上,這一突破使得中小型企業(yè)也能輕松參與AI創(chuàng)新。然而,隨著
    的頭像 發(fā)表于 02-13 09:11 ?482次閱讀

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+第一章初體驗

    《基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化》試讀報告 ——第一章:了解大模型與RAG 近年來,隨著人工智能技術(shù)的快速發(fā)展,大模型與生成式AI技術(shù)逐
    發(fā)表于 02-07 10:42

    【「大模型啟示錄」閱讀體驗】對大模型更深入的認知

    的平衡,解釋得清清楚楚,讓我這個非專業(yè)人士也能明白大模型在實際應(yīng)用中面臨的挑戰(zhàn)和限制,也對這些模型復(fù)雜性和挑戰(zhàn)有了更深的理解。 而且,書中還提到了OpenAI的成功案例和CUDA技術(shù)壁壘的形成,這些
    發(fā)表于 12-20 15:46

    AI模型部署邊緣設(shè)備的奇妙之旅:目標檢測模型

    ,PReLU仍然能夠在正輸入?yún)^(qū)域促進稀疏激活,這對模型的學(xué)習(xí)是有利的。 缺點 增加模型復(fù)雜度:由于引入了額外的可學(xué)習(xí)參數(shù) α,這增加
    發(fā)表于 12-19 14:33

    AI大語言模型開發(fā)步驟

    開發(fā)一個高效、準確的大語言模型是一個復(fù)雜且多階段的過程,涉及數(shù)據(jù)收集與預(yù)處理、模型架構(gòu)設(shè)計、訓(xùn)練與優(yōu)化、評估與調(diào)試等多個環(huán)節(jié)。接下來,AI
    的頭像 發(fā)表于 12-19 11:29 ?718次閱讀

    深度學(xué)習(xí)模型的魯棒優(yōu)化

    深度學(xué)習(xí)模型的魯棒優(yōu)化是一個復(fù)雜但至關(guān)重要的任務(wù),它涉及多個方面的技術(shù)和策略。以下是一些關(guān)鍵的優(yōu)化方法: 一、數(shù)據(jù)預(yù)處理與增強 數(shù)據(jù)清洗
    的頭像 發(fā)表于 11-11 10:25 ?872次閱讀

    AI模型的性能優(yōu)化方法

    AI模型的性能優(yōu)化是一個復(fù)雜而關(guān)鍵的任務(wù),涉及多個方面和策略。以下是一些主要的性能優(yōu)化方法: 一、模型
    的頭像 發(fā)表于 10-23 15:01 ?2100次閱讀

    中軟國際大模型運營管理系統(tǒng)推動AI商業(yè)化

    模型作為AI技術(shù)發(fā)展的新趨勢,已成為“千行百業(yè)”推動業(yè)務(wù)增長與創(chuàng)新的關(guān)鍵技術(shù)和策略。然而,隨著AI模型規(guī)模的增加,對于人工智能計算中心(
    的頭像 發(fā)表于 08-27 17:01 ?1023次閱讀
    中軟國際大<b class='flag-5'>模型</b>運營管理系統(tǒng)推動<b class='flag-5'>AI</b>商業(yè)化

    ai模型和傳統(tǒng)ai的區(qū)別在哪?

    的BERT模型使用了33億個參數(shù),而傳統(tǒng)AI模型通常只有幾千到幾百萬個參數(shù)。 模型復(fù)雜AI
    的頭像 發(fā)表于 07-16 10:06 ?2429次閱讀

    AI模型AI框架的關(guān)系

    在探討AI模型AI框架的關(guān)系時,我們首先需要明確兩者的基本概念及其在人工智能領(lǐng)域中的角色。AI模型通常指的是具有極大規(guī)模、高度
    的頭像 發(fā)表于 07-15 11:42 ?1693次閱讀

    AI模型在MCU中的應(yīng)用

    機遇。將AI模型集成到MCU中,不僅提升了設(shè)備的智能化水平,還使得設(shè)備能夠執(zhí)行更復(fù)雜的任務(wù),實現(xiàn)自主決策和實時響應(yīng)。本文將從AI模型在MCU
    的頭像 發(fā)表于 07-12 10:24 ?1718次閱讀