女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學(xué)習(xí):基本概念、五大流派與九種常見算法

新機器視覺 ? 來源:深度學(xué)習(xí)沖鴨 ? 作者:深度學(xué)習(xí)沖鴨 ? 2021-03-29 11:38 ? 次閱讀

一、機器學(xué)習(xí)概覽

5bf72a2c-8e94-11eb-8b86-12bb97331649.jpg

1. 什么是機器學(xué)習(xí)?

機器通過分析大量數(shù)據(jù)來進行學(xué)習(xí)。比如說,不需要通過編程來識別貓或人臉,它們可以通過使用圖片來進行訓(xùn)練,從而歸納和識別特定的目標。

2. 機器學(xué)習(xí)和人工智能的關(guān)系

機器學(xué)習(xí)是一種重在尋找數(shù)據(jù)中的模式并使用這些模式來做出預(yù)測的研究和算法的門類。機器學(xué)習(xí)是人工智能領(lǐng)域的一部分,并且和知識發(fā)現(xiàn)與數(shù)據(jù)挖掘有所交集。

5c202044-8e94-11eb-8b86-12bb97331649.jpg

3. 機器學(xué)習(xí)的工作方式

①選擇數(shù)據(jù):將你的數(shù)據(jù)分成三組:訓(xùn)練數(shù)據(jù)、驗證數(shù)據(jù)和測試數(shù)據(jù)

②模型數(shù)據(jù):使用訓(xùn)練數(shù)據(jù)來構(gòu)建使用相關(guān)特征的模型

③驗證模型:使用你的驗證數(shù)據(jù)接入你的模型

④測試模型:使用你的測試數(shù)據(jù)檢查被驗證的模型的表現(xiàn)

⑤使用模型:使用完全訓(xùn)練好的模型在新數(shù)據(jù)上做預(yù)測

⑥調(diào)優(yōu)模型:使用更多數(shù)據(jù)、不同的特征或調(diào)整過的參數(shù)來提升算法的性能表現(xiàn)

5c5e3ae6-8e94-11eb-8b86-12bb97331649.jpg

4. 機器學(xué)習(xí)所處的位置

①傳統(tǒng)編程:軟件工程師編寫程序來解決問題。首先存在一些數(shù)據(jù)→為了解決一個問題,軟件工程師編寫一個流程來告訴機器應(yīng)該怎樣做→計算機遵照這一流程執(zhí)行,然后得出結(jié)果

②統(tǒng)計學(xué):分析師比較變量之間的關(guān)系

③機器學(xué)習(xí):數(shù)據(jù)科學(xué)家使用訓(xùn)練數(shù)據(jù)集來教計算機應(yīng)該怎么做,然后系統(tǒng)執(zhí)行該任務(wù)。首先存在大數(shù)據(jù)→機器會學(xué)習(xí)使用訓(xùn)練數(shù)據(jù)集來進行分類,調(diào)節(jié)特定的算法來實現(xiàn)目標分類→該計算機可學(xué)習(xí)識別數(shù)據(jù)中的關(guān)系、趨勢和模式

智能應(yīng)用:智能應(yīng)用使用人工智能所得到的結(jié)果,如圖是一個精準農(nóng)業(yè)的應(yīng)用案例示意,該應(yīng)用基于無人機所收集到的數(shù)據(jù)

5cc0812e-8e94-11eb-8b86-12bb97331649.jpg

5. 機器學(xué)習(xí)的實際應(yīng)用

機器學(xué)習(xí)有很多應(yīng)用場景,這里給出了一些示例,你會怎么使用它?

快速三維地圖測繪和建模:要建造一架鐵路橋,PwC 的數(shù)據(jù)科學(xué)家和領(lǐng)域?qū)<覍C器學(xué)習(xí)應(yīng)用到了無人機收集到的數(shù)據(jù)上。這種組合實現(xiàn)了工作成功中的精準監(jiān)控和快速反饋。

增強分析以降低風(fēng)險:為了檢測內(nèi)部交易,PwC 將機器學(xué)習(xí)和其它分析技術(shù)結(jié)合了起來,從而開發(fā)了更為全面的用戶概況,并且獲得了對復(fù)雜可疑行為的更深度了解。

預(yù)測表現(xiàn)最佳的目標:PwC 使用機器學(xué)習(xí)和其它分析方法來評估 Melbourne Cup 賽場上不同賽馬的潛力。

二、機器學(xué)習(xí)的演化

5cf85fa4-8e94-11eb-8b86-12bb97331649.jpg

幾十年來,人工智能研究者的各個「部落」一直以來都在彼此爭奪主導(dǎo)權(quán),參閱機器之心文章《華盛頓大學(xué)教授 Pedro Domingos:機器學(xué)習(xí)領(lǐng)域五大流派(附演講 ppt)》。現(xiàn)在是這些部落聯(lián)合起來的時候了嗎?他們也可能不得不這樣做,因為合作和算法融合是實現(xiàn)真正通用人工智能(AGI)的唯一方式。這里給出了機器學(xué)習(xí)方法的演化之路以及未來的可能模樣。 1. 五大流派 ①符號主義:使用符號、規(guī)則和邏輯來表征知識和進行邏輯推理,最喜歡的算法是:規(guī)則和決策樹 ②貝葉斯派:獲取發(fā)生的可能性來進行概率推理,最喜歡的算法是:樸素貝葉斯或馬爾可夫 ③聯(lián)結(jié)主義:使用概率矩陣和加權(quán)神經(jīng)元來動態(tài)地識別和歸納模式,最喜歡的算法是:神經(jīng)網(wǎng)絡(luò) ④進化主義:生成變化,然后為特定目標獲取其中最優(yōu)的,最喜歡的算法是:遺傳算法 ⑤Analogizer:根據(jù)約束條件來優(yōu)化函數(shù)(盡可能走到更高,但同時不要離開道路),最喜歡的算法是:支持向量機

5d215d8c-8e94-11eb-8b86-12bb97331649.jpg

2. 演化的階段 1980 年代

主導(dǎo)流派:符號主義

架構(gòu):服務(wù)器或大型機

主導(dǎo)理論:知識工程

基本決策邏輯:決策支持系統(tǒng),實用性有限

1990 年代到 2000 年

主導(dǎo)流派:貝葉斯

架構(gòu):小型服務(wù)器集群

主導(dǎo)理論:概率論

分類:可擴展的比較或?qū)Ρ龋瑢υS多任務(wù)都足夠好了

2010 年代早期到中期

主導(dǎo)流派:聯(lián)結(jié)主義

架構(gòu):大型服務(wù)器農(nóng)場

主導(dǎo)理論:神經(jīng)科學(xué)和概率

識別:更加精準的圖像和聲音識別、翻譯、情緒分析等

5d60fcbc-8e94-11eb-8b86-12bb97331649.jpg

3. 這些流派有望合作,并將各自的方法融合到一起 2010 年代末期

主導(dǎo)流派:聯(lián)結(jié)主義+符號主義

架構(gòu):許多云

主導(dǎo)理論:記憶神經(jīng)網(wǎng)絡(luò)、大規(guī)模集成、基于知識的推理

簡單的問答:范圍狹窄的、領(lǐng)域特定的知識共享

2020 年代+

主導(dǎo)流派:聯(lián)結(jié)主義+符號主義+貝葉斯+……

架構(gòu):云計算和霧計算

主導(dǎo)理論:感知的時候有網(wǎng)絡(luò),推理和工作的時候有規(guī)則

簡單感知、推理和行動:有限制的自動化或人機交互

2040 年代+

主導(dǎo)流派:算法融合

架構(gòu):無處不在的服務(wù)器

主導(dǎo)理論:最佳組合的元學(xué)習(xí)

感知和響應(yīng):基于通過多種學(xué)習(xí)方式獲得的知識或經(jīng)驗采取行動或做出回答

三、機器學(xué)習(xí)的算法

5da31ae8-8e94-11eb-8b86-12bb97331649.jpg

你應(yīng)該使用哪種機器學(xué)習(xí)算法?這在很大程度上依賴于可用數(shù)據(jù)的性質(zhì)和數(shù)量以及每一個特定用例中你的訓(xùn)練目標。不要使用最復(fù)雜的算法,除非其結(jié)果值得付出昂貴的開銷和資源。這里給出了一些最常見的算法,按使用簡單程度排序。更多內(nèi)容可參閱機器之心的文章《機器學(xué)習(xí)算法集錦:從貝葉斯到深度學(xué)習(xí)及各自優(yōu)缺點》和《經(jīng)驗之談:如何為你的機器學(xué)習(xí)問題選擇合適的算法?》 1. 決策樹(Decision Tree):在進行逐步應(yīng)答過程中,典型的決策樹分析會使用分層變量或決策節(jié)點,例如,可將一個給定用戶分類成信用可靠或不可靠。

優(yōu)點:擅長對人、地點、事物的一系列不同特征、品質(zhì)、特性進行評估

場景舉例:基于規(guī)則的信用評估、賽馬結(jié)果預(yù)測

5e04bfe6-8e94-11eb-8b86-12bb97331649.jpg

2. 支持向量機(Support Vector Machine):基于超平面(hyperplane),支持向量機可以對數(shù)據(jù)群進行分類。

優(yōu)點:支持向量機擅長在變量 X 與其它變量之間進行二元分類操作,無論其關(guān)系是否是線性的

場景舉例:新聞分類、手寫識別。

3. 回歸(Regression):回歸可以勾畫出因變量與一個或多個因變量之間的狀態(tài)關(guān)系。在這個例子中,將垃圾郵件和非垃圾郵件進行了區(qū)分。

優(yōu)點:回歸可用于識別變量之間的連續(xù)關(guān)系,即便這個關(guān)系不是非常明顯

場景舉例:路面交通流量分析、郵件過濾

5e3f1bf0-8e94-11eb-8b86-12bb97331649.jpg

4. 樸素貝葉斯分類(Naive Bayes Classification):樸素貝葉斯分類器用于計算可能條件的分支概率。每個獨立的特征都是「樸素」或條件獨立的,因此它們不會影響別的對象。例如,在一個裝有共 5 個黃色和紅色小球的罐子里,連續(xù)拿到兩個黃色小球的概率是多少?從圖中最上方分支可見,前后抓取兩個黃色小球的概率為 1/10。樸素貝葉斯分類器可以計算多個特征的聯(lián)合條件概率。

優(yōu)點:對于在小數(shù)據(jù)集上有顯著特征的相關(guān)對象,樸素貝葉斯方法可對其進行快速分類

場景舉例:情感分析、消費者分類

5. 隱馬爾可夫模型(Hidden Markov model):顯馬爾可夫過程是完全確定性的——一個給定的狀態(tài)經(jīng)常會伴隨另一個狀態(tài)。交通信號燈就是一個例子。相反,隱馬爾可夫模型通過分析可見數(shù)據(jù)來計算隱藏狀態(tài)的發(fā)生。隨后,借助隱藏狀態(tài)分析,隱馬爾可夫模型可以估計可能的未來觀察模式。在本例中,高或低氣壓的概率(這是隱藏狀態(tài))可用于預(yù)測晴天、雨天、多云天的概率。

優(yōu)點:容許數(shù)據(jù)的變化性,適用于識別(recognition)和預(yù)測操作

場景舉例:面部表情分析、氣象預(yù)測

5e904a66-8e94-11eb-8b86-12bb97331649.jpg

6. 隨機森林(Random forest):隨機森林算法通過使用多個帶有隨機選取的數(shù)據(jù)子集的樹(tree)改善了決策樹的精確性。本例在基因表達層面上考察了大量與乳腺癌復(fù)發(fā)相關(guān)的基因,并計算出復(fù)發(fā)風(fēng)險。

優(yōu)點:隨機森林方法被證明對大規(guī)模數(shù)據(jù)集和存在大量且有時不相關(guān)特征的項(item)來說很有用

場景舉例:用戶流失分析、風(fēng)險評估

7. 循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent neural network):在任意神經(jīng)網(wǎng)絡(luò)中,每個神經(jīng)元都通過 1 個或多個隱藏層來將很多輸入轉(zhuǎn)換成單個輸出。循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)會將值進一步逐層傳遞,讓逐層學(xué)習(xí)成為可能。換句話說,RNN 存在某種形式的記憶,允許先前的輸出去影響后面的輸入。

優(yōu)點:循環(huán)神經(jīng)網(wǎng)絡(luò)在存在大量有序信息時具有預(yù)測能力

場景舉例:圖像分類與字幕添加、政治情感分析

5f9a9be6-8e94-11eb-8b86-12bb97331649.jpg

8. 長短期記憶(Long short-term memory,LSTM)與門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(gated recurrent unit nerual network):早期的 RNN 形式是會存在損耗的。盡管這些早期循環(huán)神經(jīng)網(wǎng)絡(luò)只允許留存少量的早期信息,新近的長短期記憶(LSTM)與門控循環(huán)單元(GRU)神經(jīng)網(wǎng)絡(luò)都有長期與短期的記憶。換句話說,這些新近的 RNN 擁有更好的控制記憶的能力,允許保留早先的值或是當(dāng)有必要處理很多系列步驟時重置這些值,這避免了「梯度衰減」或逐層傳遞的值的最終 degradation。LSTM 與 GRU 網(wǎng)絡(luò)使得我們可以使用被稱為「門(gate)」的記憶模塊或結(jié)構(gòu)來控制記憶,這種門可以在合適的時候傳遞或重置值。

優(yōu)點:長短期記憶和門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)具備與其它循環(huán)神經(jīng)網(wǎng)絡(luò)一樣的優(yōu)點,但因為它們有更好的記憶能力,所以更常被使用

場景舉例:自然語言處理、翻譯

9. 卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network):卷積是指來自后續(xù)層的權(quán)重的融合,可用于標記輸出層。

優(yōu)點:當(dāng)存在非常大型的數(shù)據(jù)集、大量特征和復(fù)雜的分類任務(wù)時,卷積神經(jīng)網(wǎng)絡(luò)是非常有用的

場景舉例:圖像識別、文本轉(zhuǎn)語音、藥物發(fā)現(xiàn)

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖像識別
    +關(guān)注

    關(guān)注

    9

    文章

    526

    瀏覽量

    38896
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8490

    瀏覽量

    134080
  • 自然語言處理
    +關(guān)注

    關(guān)注

    1

    文章

    628

    瀏覽量

    14006

原文標題:三張圖讀懂機器學(xué)習(xí):基本概念、五大流派與九種常見算法

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法
    的頭像 發(fā)表于 12-30 09:16 ?1026次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    自然語言處理與機器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個核心領(lǐng)域,它使計算機能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測或決策。自然語言處理與機器學(xué)習(xí)之間有著密切的關(guān)系,因為機器
    的頭像 發(fā)表于 12-05 15:21 ?1734次閱讀

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一專門為深度
    的頭像 發(fā)表于 11-15 09:19 ?1073次閱讀

    Linux應(yīng)用編程的基本概念

    Linux應(yīng)用編程涉及到在Linux環(huán)境下開發(fā)和運行應(yīng)用程序的一系列概念。以下是一些涵蓋Linux應(yīng)用編程的基本概念
    的頭像 發(fā)表于 10-24 17:19 ?560次閱讀

    socket的基本概念和原理

    的通信。它是一個抽象的概念,用于表示網(wǎng)絡(luò)中的一個通信實體。在計算機網(wǎng)絡(luò)中,Socket允許應(yīng)用程序通過網(wǎng)絡(luò)發(fā)送和接收數(shù)據(jù)。Socket的概念最早由UNIX操作系統(tǒng)引入,后來被廣泛應(yīng)用于各種操作系統(tǒng)和編程語言中。 2. Socket的基本
    的頭像 發(fā)表于 08-16 10:51 ?3142次閱讀

    AI入門之深度學(xué)習(xí)基本概念

    義明確的邏輯問題,比如早期的PC小游戲:子棋等,但是像圖像分類、語音識別或自然語言翻譯等更復(fù)雜、更模糊的任務(wù),難以給出明確的規(guī)則。 圖2:機器學(xué)習(xí)把這個過程反了過來:機器讀取輸入數(shù)據(jù)
    的頭像 發(fā)表于 08-08 11:24 ?2342次閱讀
    AI入門之深度<b class='flag-5'>學(xué)習(xí)</b>:<b class='flag-5'>基本概念</b>篇

    BP網(wǎng)絡(luò)的基本概念和訓(xùn)練原理

    )的多層前饋神經(jīng)網(wǎng)絡(luò)。BP網(wǎng)絡(luò)自1985年提出以來,因其強大的學(xué)習(xí)和適應(yīng)能力,在機器學(xué)習(xí)、數(shù)據(jù)挖掘、模式識別等領(lǐng)域得到了廣泛應(yīng)用。以下將對BP網(wǎng)絡(luò)的基本概念、訓(xùn)練原理及其優(yōu)缺點進行詳細
    的頭像 發(fā)表于 07-19 17:24 ?2797次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    基本概念、原理、特點以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一深度學(xué)習(xí)算法,它由多層卷積層和池化層堆疊而成
    的頭像 發(fā)表于 07-11 14:38 ?2227次閱讀

    遷移學(xué)習(xí)基本概念和實現(xiàn)方法

    遷移學(xué)習(xí)(Transfer Learning)是機器學(xué)習(xí)領(lǐng)域中的一個重要概念,其核心思想是利用在一個任務(wù)或領(lǐng)域中學(xué)到的知識來加速或改進另一個相關(guān)任務(wù)或領(lǐng)域的
    的頭像 發(fā)表于 07-04 17:30 ?3193次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)的基本概念

    循環(huán)神經(jīng)網(wǎng)絡(luò)的基本概念、循環(huán)機制、長短時記憶網(wǎng)絡(luò)(LSTM)、門控循環(huán)單元(GRU)等方面進行介紹。 循環(huán)神經(jīng)網(wǎng)絡(luò)的基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)是一時間序列模型,其基本思想是將序列數(shù)據(jù)中的每個元素(例如,單詞、時間點等)作為輸入,通
    的頭像 發(fā)表于 07-04 14:31 ?1191次閱讀

    人工智能深度學(xué)習(xí)五大模型及其應(yīng)用領(lǐng)域

    隨著科技的飛速發(fā)展,人工智能(AI)技術(shù)特別是深度學(xué)習(xí)在各個領(lǐng)域展現(xiàn)出了強大的潛力和廣泛的應(yīng)用價值。深度學(xué)習(xí)作為人工智能的一個核心分支,通過模擬人腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能,實現(xiàn)了對復(fù)雜數(shù)據(jù)的自動學(xué)習(xí)和特征提取。本文將詳細盤點人工智
    的頭像 發(fā)表于 07-03 18:20 ?6254次閱讀

    機器學(xué)習(xí)算法原理詳解

    機器學(xué)習(xí)作為人工智能的一個重要分支,其目標是通過讓計算機自動從數(shù)據(jù)中學(xué)習(xí)并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見機器
    的頭像 發(fā)表于 07-02 11:25 ?2159次閱讀

    機器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機器學(xué)習(xí)作為一強大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準確的數(shù)據(jù)分析能力。本文將深入
    的頭像 發(fā)表于 07-02 11:22 ?1251次閱讀

    機器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計
    的頭像 發(fā)表于 06-27 08:27 ?1946次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    串口通信的基本概念

    串口通信(Serial Communications)的基本概念可以歸納為以下幾個方面:
    的頭像 發(fā)表于 06-12 09:28 ?1349次閱讀
    串口通信的<b class='flag-5'>基本概念</b>