女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于內存的人工智能神經網絡架構

姚小熊27 ? 來源:人工智能實驗室 ? 作者:人工智能實驗室 ? 2020-12-18 13:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在過去十年左右的時間里,研究人員已經開發了多種基于人工神經網絡(ANN)的計算模型。盡管已發現許多這些模型在特定任務上表現良好,但它們并不總是能夠識別可應用于新問題的迭代,順序或算法策略。

過去的研究發現,添加外部存儲器組件可以提高神經網絡獲取這些策略的能力。但是,即使使用外部存儲器,它們也容易出錯,對提供給他們的數據變化敏感,并且需要大量的訓練數據才能很好地發揮作用。

達姆施塔特技術大學的研究人員最近推出了一種新的基于記憶增強的基于ANN的體系結構,該體系結構可以學習解決問題的抽象策略。這種結構在將算法計算與依賴于數據的操作分開,將算法處理的信息流劃分為兩個不同的“流”。

研究人員在論文中寫道:“擴展具有外部記憶的神經網絡已經提高了他們學習這種策略的能力,但是它們仍然容易出現數據變化,難以學習可擴展和可轉移的解決方案,并且需要大量的訓練數據?!?“我們提出了神經哈佛計算機,這是一種基于內存的基于網絡的體系結構,該體系結構通過將算法操作與數據操作解耦而采用抽象,通過拆分信息流和分離的模塊來實現?!?/p>

神經哈佛計算機或NHC將輸入算法的信息流分為兩個不同的流,即數據流(包含特定于數據的操作)和控制流(包含算法操作)。最終,它可以區分與數據相關的模塊和算法模塊,從而創建兩個獨立但又耦合的存儲器。

NHC具有三個主要的算法模塊,分別稱為控制器,存儲器和總線。這三個組件具有不同的功能,但彼此交互以獲取可應用于將來任務的抽象。研究人員在論文中解釋說:“這種抽象機制和進化訓練使學習健壯和可擴展的算法解決方案成為可能?!?/p>

研究人員通過使用NHC訓練和運行11種不同的算法來評估NHC。然后,他們測試了這些算法的性能,以及它們的泛化和抽象能力。研究人員發現,NHC可以可靠地運行所有11種算法,同時還可以使它們在比最初訓練要完成的任務復雜的任務上表現出色?!霸?1種復雜程度各異的算法中,我們證明NHC可靠地學習了具有強大概括性和抽象性的算法解決方案,可以完美地概括和擴展到任意任務配置和復雜性,而這些復雜性和復雜性遠遠超出了訓練期間所看到的,并且與數據無關表示法和任務領域”,

該研究人員小組最近進行的研究證實了使用外部存儲組件來增強復雜程度不同的任務中基于神經網絡的體系結構的性能和可推廣性的潛力。將來,NHC體系結構可用于合并和改進不同ANN的功能,從而幫助開發可識別有用策略的模型,從而基于新數據做出準確的預測。
責任編輯:YYX

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103704
  • 內存
    +關注

    關注

    8

    文章

    3125

    瀏覽量

    75288
  • 人工智能
    +關注

    關注

    1807

    文章

    49030

    瀏覽量

    249723
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    MAX78000采用超低功耗卷積神經網絡加速度計的人工智能微控制器技術手冊

    人工智能(AI)需要超強的計算能力,而Maxim則大大降低了AI計算所需的功耗。MAX78000是一款新型的AI微控制器,使神經網絡能夠在互聯網邊緣端以超低功耗運行,將高能效的AI處理與經過驗證
    的頭像 發表于 05-08 11:42 ?301次閱讀
    MAX78000采用超低功耗卷積<b class='flag-5'>神經網絡</b>加速度計<b class='flag-5'>的人工智能</b>微控制器技術手冊

    MAX78002帶有低功耗卷積神經網絡加速器的人工智能微控制器技術手冊

    人工智能(AI)需要超強的計算能力,而Maxim則大大降低了AI計算所需的功耗。MAX78002是一款新型的AI微控制器,使神經網絡能夠在互聯網邊緣端以超低功耗運行,將高能效的AI處理與經過驗證
    的頭像 發表于 05-08 10:16 ?219次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經網絡</b>加速器<b class='flag-5'>的人工智能</b>微控制器技術手冊

    開售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 處理器、神經網絡處理器 NPU, Android 14.0/debian11/ubuntu20.04 操作系統
    發表于 04-23 10:55

    【「芯片通識課:一本書讀懂芯片技術」閱讀體驗】從deepseek看今天芯片發展

    的: 神經網絡處理器(NPU)是一種模仿人腦神經網絡的電路系統,是實現人工智能神經網絡計算的專用處理器,主要用于人工智能深度學習模型的加速
    發表于 04-02 17:25

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?676次閱讀

    BP神經網絡的優缺點分析

    自學習能力 : BP神經網絡能夠通過訓練數據自動調整網絡參數,實現對輸入數據的分類、回歸等任務,無需人工進行復雜的特征工程。 泛化能力強 : BP神經網絡通過訓練數據學習到的特征表示
    的頭像 發表于 02-12 15:36 ?930次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01
    的頭像 發表于 01-09 10:24 ?1215次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b><b class='flag-5'>架構</b>方法

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統
    的頭像 發表于 11-15 14:53 ?1882次閱讀

    RNN模型與傳統神經網絡的區別

    傳統神經網絡(前饋神經網絡) 2.1 結構 傳統神經網絡,通常指的是前饋神經網絡(Feedforward Neural Networks, FNN),是一種最簡單
    的頭像 發表于 11-15 09:42 ?1136次閱讀

    嵌入式和人工智能究竟是什么關系?

    人工智能的結合,無疑是科技發展中的一場革命。在人工智能硬件加速中,嵌入式系統以其獨特的優勢和重要性,發揮著不可或缺的作用。通過深度學習和神經網絡等算法,嵌入式系統能夠高效地處理大量數據,從而實現
    發表于 11-14 16:39

    Moku人工神經網絡101

    不熟悉神經網絡的基礎知識,或者想了解神經網絡如何優化加速實驗研究,請繼續閱讀,探索基于深度學習的現代智能化實驗的廣闊應用前景。什么是神經網絡?“人工
    的頭像 發表于 11-01 08:06 ?669次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經網絡</b>101

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數據中提
    發表于 10-24 13:56

    risc-v在人工智能圖像處理應用前景分析

    長時間運行或電池供電的設備尤為重要。 高性能 : 盡管RISC-V架構以低功耗著稱,但其高性能也不容忽視。通過優化指令集和處理器設計,RISC-V可以在處理復雜的人工智能圖像處理任務時表現出色。 三
    發表于 09-28 11:00

    如何選擇神經網絡種類

    人工智能和機器學習領域,選擇適合的神經網絡種類是構建高效、準確模型的關鍵步驟。這一過程涉及對任務類型、數據特性、計算資源及模型性能要求等多方面的綜合考慮。
    的頭像 發表于 07-24 11:29 ?1206次閱讀

    FPGA在深度神經網絡中的應用

    隨著人工智能技術的飛速發展,深度神經網絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統的深度神經網絡模型
    的頭像 發表于 07-24 10:42 ?1221次閱讀