女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

5G毫米波頻譜全球協同分配正在穩步推進

我快閉嘴 ? 來源:通信世界全媒體 ? 作者:通信世界全媒體 ? 2020-10-14 09:56 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在IMT-2020(5G)推進組組織下,國內各運營商、各主流設備廠商和終端廠商經充分討論,在毫米波單載波帶寬應用標準上達成一致:毫米波基站、終端必選支持200MHz載波帶寬,鼓勵基站加快研發400MHz載波帶寬,這標志著產業界已明確未來5G毫米波的演進方向:超大帶寬、超大容量、超凡體驗。

顧名思義,毫米波是波長為毫米級的電磁波,包含24 GHz以上頻段。2019 年國際電信聯盟(ITU)的世界無線電通信大會(WRC-19)已確定 24 GHz 至 86 GHz 之間的毫米波頻段將用于國際移動通信(IMT),其中24.25-27.5GHz、37-43.5GHz和66-71GHz頻段為全球融合一致的IMT頻段。5G毫米波頻譜全球協同分配正在穩步推進,中國也將毫米波納入5G下一步關鍵頻譜規劃的選擇之一。

不同單載波帶寬在網絡覆蓋、容量、用戶體驗方面各有利弊,總體而言,單載波帶寬越大,網絡性能和網絡可維護性方面越占優,但同時需要考慮實現復雜度等因素。綜合考慮‘端管芯’產業現狀與主流規劃,最終確定單載波200MHz為毫米波初期部署的最佳選擇。

得益于5G第一波TDD中頻譜的合理發放,2020年5G已在中國實現了快速規模商用。未雨綢繆,面向5G中后期演進,基于200MHz單載波帶寬疊加多載波聚合技術,形成超大帶寬,可以最大化發揮毫米波的優勢,在5G中后期釋放更高的技術紅利,使能數字化、智能化社會。

后續IMT-2020(5G)推進組將制定工作計劃,組織開展毫米波200MHz單載波帶寬的相關測試,持續推動毫米波產業發展。
責任編輯:tzh

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 網絡
    +關注

    關注

    14

    文章

    7815

    瀏覽量

    90933
  • 毫米波
    +關注

    關注

    21

    文章

    1973

    瀏覽量

    66045
  • 5G
    5G
    +關注

    關注

    1360

    文章

    48813

    瀏覽量

    573702
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    看懂毫米波雷達,這一篇就夠啦!

    /5G,電磁頻率在0.7-4.9GHz之間。毫米波的頻率比它要高1-2個數量級。比毫米波頻率更高一級的,則是太赫茲(THz)頻段。根據“波長×頻率=光速”的公式,毫
    的頭像 發表于 07-09 19:02 ?475次閱讀
    看懂<b class='flag-5'>毫米波</b>雷達,這一篇就夠啦!

    Leadway測試級鎧裝精密穩相毫米波線纜(110GHz)

    測試,如衛星載荷驗證與電子戰系統校準。應用場景l 5G/6G通信測試:用于毫米波頻段的基站測試、終端設備性能驗證等場景。l 航空航天與國防:滿足雷達系統、衛星通信設備的高頻測試需求,支持極端環境下的可靠
    發表于 05-19 09:53

    是德頻譜分析儀N9021B毫米波信號測量技巧與校準方法

    。 ? 一、毫米波信號測量技巧 1. 優化分析帶寬與分辨率設置 寬帶信號分析:針對5G毫米波等寬帶信號,建議啟用510MHz分析帶寬(B5X選件),確保完整捕獲信號
    的頭像 發表于 04-29 10:33 ?273次閱讀
    是德<b class='flag-5'>頻譜</b>分析儀N9021B<b class='flag-5'>毫米波</b>信號測量技巧與校準方法

    5G毫米波專網重塑英特爾成都工廠AMR系統

    在工業智能化加速發展的今天,5G 技術正成為關鍵驅動力。然而,基于公網的工業 5G 方案在時延、可靠性和覆蓋能力方面仍存在瓶頸,影響了部分應用場景的穩定性和實時性。作為突破性技術,5G 毫米波
    的頭像 發表于 04-08 09:24 ?654次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>專網重塑英特爾成都工廠AMR系統

    ALN4000-10-3530毫米波低噪聲放大器WENTEQ

    ℃~+125℃ 應用領域 雷達系統:用于毫米波雷達的前端信號放大,提升探測距離和精度。 衛星通信:作為接收機的前置放大器,提高信號接收質量。 5G/6G 通信:支持毫米波頻段的基站和終
    發表于 03-12 09:30

    華為發布5G-A毫米波萬兆網絡

    ,黑龍江聯通與華為攜手合作,成功部署了基于毫米波和C-Band 3CC(三載波聚合)技術的5G-A萬兆網絡。這一網絡通過毫米波與Sub-6GHz(低于6GHz的5G頻段)的高低頻
    的頭像 發表于 02-11 09:39 ?862次閱讀

    ALN3750-13-3335毫米波低噪聲放大器WENTEQ

    ALN3750-13-3335毫米波低噪聲放大器WENTEQALN3750-13-3335毫米波低噪聲放大器是毫米波通信系統中的核心組件,專為高頻信號放大而設計,尤其適用于5G及未來6
    發表于 02-11 09:32

    毫米波雷達工作原理 毫米波雷達應用領域

    毫米波雷達工作原理 1. 毫米波雷達的基本結構 毫米波雷達系統通常由以下幾個主要部分組成: 發射器 :產生毫米波信號。 天線 :發射和接收毫米波
    的頭像 發表于 12-03 17:21 ?2342次閱讀

    5G毫米波市場蓬勃發展的因素

    毫米波5G市場迎來決定性時刻的當下,市場需求開始呈指數級攀升并達到一個臨界點。需求量的極速膨脹將催生一條持續上揚的增長曲線。為應對這一需求的激增和5G應用場景的爆發,將需要大量關鍵的毫米波
    的頭像 發表于 11-17 10:51 ?720次閱讀

    蘋果自研5G芯片獲重要進展,毫米波技術暫缺席

    知名科技媒體DigiTimes最新爆料指出,蘋果公司在其自主研發的5G調制解調器(基帶芯片)項目上取得了顯著進展,然而,首個版本卻面臨一個關鍵性限制:不支持毫米波技術。這一消息引發了業界的廣泛關注,尤其是在考慮到毫米波對于提升
    的頭像 發表于 09-20 16:05 ?1329次閱讀

    什么是毫米波雷達?毫米波雷達模組選型

    一、什么是毫米波雷達毫米波雷達是一種非接觸型的傳感器,其工作頻率范圍涵蓋10毫米(30GHz)至1毫米(300GHz)的波段。這種技術具備精確的定位感知能力,可準確測定目標的位置、速度
    的頭像 發表于 09-06 17:38 ?2660次閱讀
    什么是<b class='flag-5'>毫米波</b>雷達?<b class='flag-5'>毫米波</b>雷達模組選型

    5G毫米波測試助力突破高頻段設備局限,實現高效外場測試

    作者介紹 ? 一、方案背景 隨著業務對帶寬需求的不斷增加,通信頻譜不斷向更高頻譜延伸,5G毫米波具有豐富的頻率資源,是移動通信技術演進的必然方向。下圖是ITU的WRC-19會議發布的目
    的頭像 發表于 08-21 13:34 ?641次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>測試助力突破高頻段設備局限,實現高效外場測試

    簡述毫米波雷達的結構、原理和特點

    毫米波雷達是一種利用毫米波段電磁進行探測和測量的雷達系統,具有高分辨率、高靈敏度、高抗干擾能力等特點,在軍事、航空、航天、交通、氣象等領域得到廣泛應用。 一、毫米波雷達的結構
    的頭像 發表于 08-16 10:05 ?4290次閱讀

    5G網絡毫米波支持的最大載波帶寬是多少?

    的連接能力和新興技術的應用,如物聯網、車聯網和虛擬現實。在5G網絡中,毫米波技術被廣泛應用于高速數據傳輸。毫米波波段屬于無線通信頻譜的一個新領域,其工作頻段通常在
    的頭像 發表于 08-01 08:10 ?1811次閱讀
    <b class='flag-5'>5G</b>網絡<b class='flag-5'>毫米波</b>支持的最大載波帶寬是多少?

    愛立信與高通、Dronus共同完成使用5G毫米波無人機的制造與倉儲用例測試

    近期,愛立信、高通及工業無人機解決方案提供商Dronus共同完成了一項使用5G毫米波無人機的制造與倉儲用例測試。5G毫米波無人機用例是在制造環境中大量使用無人機的第一步。 ? ? 1
    的頭像 發表于 07-31 18:03 ?2w次閱讀