女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于ZU+的外掛8顆DDR4的設計案例分析

電子設計 ? 來源:賽靈思中文社區 ? 作者:賽靈思中文社區 ? 2020-12-21 14:04 ? 次閱讀

本篇主要針對Zynq UltraScale + MPSoC的DDR接口,從硬件設計的角度進行詳細介紹,最后展示一下小編之前自己設計的基于ZU+的外掛8顆DDR4的設計。

目前比較常用的DDR是DDR4和DDR3,其他系列相對使用較少一些,本文主要以DDR4進行介紹。

1、選型

根據ZU+系列芯片的數據手冊、TRM、pg150等文檔,DDR可以掛載在PS側,也可以掛載在PL側,也可同時掛載在PS側和PL側。

PL和PS均支持64位的DDR4(不帶ECC功能),PL部分如果要支持64位的DDR4,則至少需要提供三個bank的HP接口,只能選擇SFVC784或者更高的封裝。需要特別說明的是,使用內存顆粒和使用內存條的容量差異較大,需要根據實際需求進行選擇。

ZU+的DDR4接口如下:

o4YBAF9uGkGAa1gkAAz-mjznpmI860.png

PS側DDR接口框圖

o4YBAF9uGkOAVvpxAAHrhcNxERc710.png

PL側DDR接口框圖

針對DDR3,其特性如下:

支持DDR3 (1.5V) and DDR3L (1.35V)

容量限制:Support densities up to 8 Gb for components, 32 GB for RDIMMs, 16 GB for SODIMMs, and 16 GB for UDIMMs. Other densities for memory device support is available through custom part selection.

針對DDR4,其特性如下:

容量限制:Support densities up to 32 Gb for components, 64 GB for LRDIMMs, 128 GB for RDIMMs, 16 GB for SODIMMs, and 16 GB for UDIMMs. Other densities for memory device support is available through custom part selection.

DDR接口粗略的介紹可以參見之前的文章《Zynq UltraScale+系列之“外圍接口概述”》,PS側的DDR控制器的詳細特性可參看《UG1085》的第17章,PL側的的相關特性可參考《PG150》、《WP454》等資料,此處不再贅述。

2、Performance

DDR總線的效率在不同的使用模式下差異很大,在實際評估速率時一定要搞清楚使用情況。

針對幾種常用的操作模式,《PG150》給出了具體的效率,詳見下表:

pIYBAF9uGkSAZHOGAAC1UE9LAdY206.png

幾種常見的操作模式如下:

Sequential Read

Simple address increment pattern

100% reads

Sequential Write

Simple address increment pattern

100% writes (except for periodic reads generated by the controller for VT tracking)

Burst Read/Write Mix

Repeating pattern of 64 sequential reads and 64 sequential writes

50/50 read/write mix

Short Burst Read/Write Mix

Repeating pattern of four sequential reads and four sequential writes

Full DRAM page accessed in bursts of four before changing the row address for high page hit rate

50/50 read/write mix

Random Address Read/Write Mix

Repeating pattern of two random reads and two random writes

Fully random address for a low page hit rate

50/50 read/write mix

3、原理圖設計

PS側的原理圖設計基本沒有任何問題,按照對應功能引腳連接即可,PL側的接口需要特別注意。

對于單個Memory接口,盡量集中使用幾個HP bank。如果使用三個bank,兩個bank用作數據接口,一個bank用作地址、控制、命令信號線接口,地址、控制、命令信號盡量使用同一個bank,不要跨bank使用;如果使用兩個bank,盡量保證數據相關引腳在一個bank,地址和控制信號在另一個bank。

地址、控制、命令信號不能和data共用byte group,只能使用data byte groups以外的byte groups。

CK差分時鐘對必須使用差分對,必須連接在控制byte group上,盡量按照Vivado軟件對時鐘引腳的約束來連接。如果有多個CK對,必須來自于同一個byte lane。

除了DQS和CK之外,其他信號都可以在byte group內隨意交換。

pIYBAF9uGkqAfUfuAAfB0A1-Pw4036.png

每一byte的data可以在組內隨意交換

前期原理圖設計階段最好在vivado中進行PL側管腳預分配,別等到PCB出來后才開始在vivado中驗證,如果關鍵信號管腳定義有問題,不能交換,則無法彌補。

針對ZU+系列MPSoC,DDR4接口的原理圖處理如下:

o4YBAF9uGk6AFpzaAAQCJnD0veE505.png

4、PCB Guidelines for DDR4 SDRAM (PL and PS)

DDR總線的布局布線需要遵循一些通用的規則,數據線只支持點到點連接,其他信號根據顆粒數量的不同可以有多種拓撲。

ZU+ DDR4 SDRAM支持兩種拓撲類型:fly-by和clamshell。Clamshell拓撲在板子空間比較緊張時有一定的優勢。在MIG中(PL側)是一種可選的拓撲,在PS側不支持clamshell拓撲。

如果使用5片x16的顆粒組成80位寬的接口時,5片DDR的布局采用fly-by topology,如果用9片x8的顆粒,則采用clamshell topology比較節約空間。

pIYBAF9uGlCAAzxcAAGVjEcOGdQ387.png

pIYBAF9uGlKABYlCAAGOUEHemsc147.png

pIYBAF9uGlSAVSpbAACJovQr6-4174.png

4.1.1、Fly-by結構布局

o4YBAF9uGlWAcnCSAAB4g2U685k671.png

pIYBAF9uGlaAIwEPAACWA5D_Q0o264.png

pIYBAF9uGlmAVezqAAKXA1PSnuY196.png

o4YBAF9uGluAOOA_AAEVh1ZD5rw454.png

4.1.2、Clamshell結構布局

o4YBAF9uGl2AR6RqAAIYouKvaJw631.png

pIYBAF9uGl6AdK3GAACJovQr6-4975.png

pIYBAF9uGmCACkQBAADEfQEatnM853.png

o4YBAF9uGmKAAsg-AADtaZuix1U434.png

o4YBAF9uGmSAW_6xAAIVbPWhn7o068.png

pIYBAF9uGmaASZsqAAHeszVS-b0205.png

4.1.3、Point-to-Point數據信號

pIYBAF9uGmeAUj3eAABcUiZX4fk853.png

o4YBAF9uGmuALI_2AAItwE1713Y496.png

由于官方推薦的主線路阻抗較小(單端36/39Ω,差分76Ω),線寬比較寬,但扇出部分阻抗又比較大(單端50Ω,差分86Ω),會導致阻抗突變,因此實際使用中可以通過調整疊層來優化線寬,在滿足阻抗要求的同時減小阻抗突變。

4.1.4、Layout Guidelines

以下為DDR4的約束規則,表格中的參數均為最短信號線和最長信號線之間的tolerance參數,數據group一般都是以DQS為TARGET,DQ與DQS進行比較約束。地址、控制、命令group一般都是以CLK為TARGET,ACC(Address、Command、Control)與CLK進行比較約束。

o4YBAF9uGmyATMQxAADsjMFZeyA083.png

pIYBAF9uGm6AMCQyAACl7XzAYdw179.png

o4YBAF9uGnCAZmcUAADlmiYRHO8157.png

pIYBAF9uGnKAHLmHAACbgZBIixI560.png

針對上圖解釋為:例如,最快的ACC信號線傳輸時間是800ps,最慢的ACC信號線傳輸時間是840ps,時鐘信號線的傳輸時間應該為862ps±8ps,比ACC總線的中間傳輸時間(820ps)慢42ps.

o4YBAF9uGnOAPsUBAAB9rng-fWM264.png

o4YBAF9uGnWAQVTUAACfYrkxt24634.png

CLK和DQS之間的約束比較寬松,最小的差異可以為-879,最大差異可以為+10600,主要是為了保證讀寫平衡功能從整個菊花鏈的第一片到最后一片顆粒都正常。

DDR控制器可以調整DQS信號線的內部延遲,由于CK信號線鏈路連接每一片DDR顆粒,導致CK容性負載更重,所以需要能夠調整DQS信號線的內部延遲,以滿足和CK之間的約束。

規范規定CK信號線和DQS信號線從FPGA到鏈路中的第一片DDR顆粒的偏差不小于-149ps,到鏈路中最遠端的DDR顆粒的偏差不大于1796ps。只要鏈鏈路中第一片DDR顆粒和最后一片DDR顆粒都滿足此條件,整個鏈路上所有的DDR顆粒的讀寫平衡功能都將正常。

例如,如果從FPGA到第一片DDR顆粒的DQS延遲為200ps,則從FPGA到第一片DDR顆粒的CK延遲應至少為51ps(200ps-149ps)。如果從FPGA到最后一片DDR顆粒的DQS延遲為700ps,則從FPGA到最后一片DDR顆粒的CK延遲應該小于2496ps(700ps+1796ps)。

下面是一些基本的規則,可以參考遵守:

使用內存條時,CK信號和DQS信號之間的余量會更小一些,因為約束的是FPGA到DIMM插槽處,而顆粒的走線是由DIMM決定的,因此余量預留小一些。

同組的DQ、DQS、DM走線必須在同一層。

DIMM數據線走線最好選擇靠近接插件的層,尤其是靠DIMM中間位置的數據組。

采用菊花鏈結構布線時,ACC信號線可以布在不同的層,但層數越少越好。不要將一個信號切換好幾層,主要走線盡量一層走完,這樣可以減小串擾,信號換層時,切換過孔附近50mil范圍內需要放置一個接地過孔。

FPGA和DDR器件驅動端的阻抗為40Ω,DCI和ODT也是40Ω。因此VTT端接電阻都選為39.2Ω。

當使用內部VREF時,PL側HP bank上的VREF引腳可以懸空,但不能用于普通IO。

如果系統時鐘連接到了DDR的HP bank,則LVDS時鐘信號需要外部端接至合適的電壓,因為該bank上有不同的邏輯電平 (HSTL, SSTL, or POD)。

對于菊花鏈布局,人字形扇出(chevron-style routing)可以形成stitching vias;對于比較緊湊的布局,可以通過環抱式扇出形成ground stitch vias。

在器件內部或者周圍盡量多放置接地過孔,這樣可以更好的為信號提供返回路徑,尤其是在邊角的位置。

對于ACC信號線的端接電阻布局,應該每四個端接電阻中間穿插布局一個0.1uF的VTT去耦電容,這樣可以減小端接VTT的噪聲。為了便于布局,最好在原理圖中就按每四個電阻放置一個去耦電容。

對于DIMM,去耦電容放置得離DIMM越近越好,這樣除了能提供接地過孔外,也能給電源提供低阻抗回路。

pIYBAF9uGnaAE6YiAACc6ZKmvF8118.png

o4YBAF9uGn2AFGL2AAYFlJhNnyw456.png

pIYBAF9uGoKAKSoCAASbRoDHZ5Y169.png

o4YBAF9uGoeAAZC0AASbDyCAA2I020.png

pIYBAF9uGoqANqqPAALt2wgh2Bw692.png

以上就是針對ZU+系列MPSoC的DDR接口的詳細介紹,PCB設計相關可參考《UG583:UltraScale Architecture PCB Design User Guide》、官方開發板ZCU104、ZCU102、ZCU106等。

下面介紹一下小編自己設計的基于ZU+(XCZU3CG-SFVC784)的外掛8顆DDR4的設計,采用十層板,板厚1.6mm,最小線寬4mil。板子尺寸120*150mm,單12V電源輸入,支持串口、I2CUSB、GbE、TF卡、CAN、PCIe等常用接口,預留PS側和PL側IO接口。

硬件框圖如下圖所示:

o4YBAF9uGo2ALNYHAAH3bOpq27U755.png

疊層設計如下圖所示:

pIYBAF9uGpWAU06dAAXMsWaedgs753.png

整板DDR4部分布局如下圖所示:

Allegro中的約束規則如下圖所示:

pIYBAF9uGqmAM3DOAArps7ji6H8942.png

ACC信號線的約束規則如下圖所示:

o4YBAF9uGrGAPSRiAAc0MtiFmCo015.png

DATA信號線的約束規則如下圖所示:

o4YBAF9uGrWATsqaAAMNngffiko954.png

整板布線完成后的情況如下圖所示:

編輯:hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • pcb
    pcb
    +關注

    關注

    4352

    文章

    23412

    瀏覽量

    406708
  • DDR
    DDR
    +關注

    關注

    11

    文章

    731

    瀏覽量

    66371
  • DDR4
    +關注

    關注

    12

    文章

    328

    瀏覽量

    41520
  • ACC
    ACC
    +關注

    關注

    1

    文章

    59

    瀏覽量

    23035
  • Zynq
    +關注

    關注

    10

    文章

    614

    瀏覽量

    48015
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    三大內存原廠或將于2025年停產DDR3/DDR4

    據報道,業內人士透露,全球三大DRAM內存制造商——三星電子、SK海力士和美光,有望在2025年內正式停產已有多年歷史的DDR3和DDR4兩代內存。 隨著技術的不斷進步和消費級平臺的更新換代
    的頭像 發表于 02-19 11:11 ?1239次閱讀

    DDR4內存適合哪些主板

    DDR4內存適合多種類型的主板,主要取決于主板的芯片組和處理器插槽類型。以下是一些常見的支持DDR4內存的主板: 一、Intel平臺主板 Z系列主板 : 如Z370、Z390、Z490、Z590等
    的頭像 發表于 11-29 15:03 ?7452次閱讀

    DDR5內存與DDR4內存性能差異

    DDR5內存與DDR4內存性能差異 隨著技術的發展,內存技術也在不斷進步。DDR5內存作為新一代的內存技術,相較于DDR4內存,在性能上有著顯著的提升。 1. 數據傳輸速率
    的頭像 發表于 11-29 14:58 ?1901次閱讀

    如何選擇DDR內存條 DDR3與DDR4內存區別

    隨著技術的不斷進步,計算機內存技術也在不斷發展。DDR(Double Data Rate)內存條作為計算機的重要組成部分,其性能直接影響到電腦的運行速度和穩定性。DDR3和DDR4是目前市場上最常
    的頭像 發表于 11-20 14:24 ?5274次閱讀

    FPGA DDR4讀寫實驗

    *2^10*8*16bit=512M*16bit。DDR4 相較于 DDR3 在指令引腳上也發生了變化,DDR4 取消了我們所熟悉的使能 WE、列激活 CAS 和行激活 RAS 這三個
    發表于 09-13 20:18

    DDR4時序參數介紹

    DDR4(Double Data Rate 4)時序參數是描述DDR4內存模塊在執行讀寫操作時所需時間的一組關鍵參數,它們直接影響到內存的性能和穩定性。以下是對DDR4時序參數的詳細解
    的頭像 發表于 09-04 14:18 ?6329次閱讀

    DDR4 SDRAM控制器的主要特點

    設計和功能對于提升系統性能、降低功耗以及增強數據可靠性起著至關重要的作用。以下是對DDR4 SDRAM控制器主要特點的詳細分析,旨在覆蓋其關鍵功能、性能提升、技術優化以及應用優勢等方面。
    的頭像 發表于 09-04 12:55 ?1165次閱讀

    什么是DDR4內存的工作頻率

    DDR4內存的工作頻率是指DDR4內存條在運行時所能達到的速度,它是衡量DDR4內存性能的一個重要指標。DDR4內存作為目前廣泛使用的內存類型之一,其工作頻率經歷了從最初的低頻率到當前
    的頭像 發表于 09-04 12:45 ?3134次閱讀

    DDR4的主要參數

    DDR4(Double Data Rate 4)作為當前主流的計算機內存技術,相較于其前身DDR3,在性能、功耗、容量等多個方面都有了顯著提升。
    的頭像 發表于 09-04 12:43 ?7337次閱讀

    DDR4的結構和尋址方式

    DDR4DDR4-SDRAM,即第4DDR-SDRAM)作為當前電子系統架構中使用最為廣泛的RAM存儲器,其結構和尋址方式對于理解其高性能和存儲容量至關重要。
    的頭像 發表于 09-04 12:42 ?2519次閱讀

    DDR4尋址原理詳解

    DDR4(Double Data Rate 4th Generation Synchronous Dynamic Random Access Memory,即第四代雙倍速率同步動態隨機存取存儲器
    的頭像 發表于 09-04 12:38 ?1861次閱讀

    DDR4內存頻率最高多少

    DDR4內存頻率的最高值是一個隨著技術進步而不斷演變的指標。目前,DDR4內存的頻率已經取得了顯著的提升,但具體到最高頻率,則需要結合多個方面來討論。
    的頭像 發表于 09-04 12:37 ?5669次閱讀

    什么是DDR4內存模塊

    DDR4內存模塊是計算機內存技術的一項重要進步,它是Double Data Rate(雙倍數據速率)第四代內存技術的具體實現形式。
    的頭像 發表于 09-04 12:35 ?1665次閱讀

    DDR4時鐘頻率和速率的關系

    DDR4(第四代雙倍數據率同步動態隨機存取存儲器)的時鐘頻率和速率之間存在著緊密的關系,這種關系對于理解DDR4內存的性能特性至關重要。以下將詳細探討DDR4時鐘頻率和速率之間的關系,包括它們如何相互影響、如何衡量以及在實際應用
    的頭像 發表于 09-04 11:44 ?5372次閱讀

    DDR4的基本概念和特性

    DDR4,即第四代雙倍數據率同步動態隨機存取存儲器(Double Data Rate Synchronous Dynamic Random Access Memory),是計算機內存技術的一個重要
    的頭像 發表于 09-04 11:43 ?5084次閱讀