女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

找到適用現(xiàn)代機(jī)器學(xué)習(xí)模型的測試和Debug新方法

DPVg_AI_era ? 來源:lp ? 2019-04-08 13:53 ? 次閱讀

傳統(tǒng)的軟件測試和debug方法很難適用于現(xiàn)代的機(jī)器學(xué)習(xí)系統(tǒng),DeepMind希望解決這一問題,開發(fā)面向預(yù)測模型的可靠驗(yàn)證工具。這篇博客描述了能嚴(yán)格識別并排除學(xué)習(xí)預(yù)測模型中的錯誤的三種方法:對抗性測試,穩(wěn)健性學(xué)習(xí)和形式驗(yàn)證。

自計(jì)算機(jī)編程誕生以來,軟件開發(fā)中就一直沒有離開過bug。隨著時間的推移,軟件開發(fā)人員已經(jīng)建立了一套在軟件實(shí)際發(fā)布前進(jìn)行測試和debug的最佳方式,但這些方式并不適合現(xiàn)代的深度學(xué)習(xí)系統(tǒng)。

今天,機(jī)器學(xué)習(xí)的主流方法是在訓(xùn)練數(shù)據(jù)集上訓(xùn)練系統(tǒng),然后在另一組數(shù)據(jù)集上進(jìn)行測試。即使在最壞的情況下,確保系統(tǒng)穩(wěn)健性或高性能也是至關(guān)重要的。本文描述了能夠嚴(yán)格識別并排除學(xué)習(xí)預(yù)測模型中的錯誤的三種方法:對抗性測試,穩(wěn)健性學(xué)習(xí)和形式驗(yàn)證。

機(jī)器學(xué)習(xí)系統(tǒng)一般是不穩(wěn)健的。即使在特定領(lǐng)域中表現(xiàn)優(yōu)于人類的系統(tǒng),具體情況稍微改變,往往就可能導(dǎo)致無法解決簡單問題。比如圖像擾動的問題:如果在輸入圖像中添加少量精心計(jì)算的噪聲,那么本來在圖像分類任務(wù)中表現(xiàn)超過人類的的神經(jīng)網(wǎng)絡(luò),很容易將一只樹獺錯認(rèn)成一輛跑車。

在圖片上加上一個對抗性輸入,可能導(dǎo)致分類器將一只樹懶錯誤識別為一輛跑車。兩個圖像在每個像素上的差異最多只有0.0078。結(jié)果第一張被歸類為三趾樹懶,置信度> 99%。第二個被歸類為一輛跑車,概率> 99%。

其實(shí)這不是什么新問題。計(jì)算機(jī)程序總是有bug。幾十年來,軟件工程師開發(fā)了種類繁多的技術(shù)工具包,從單元測試到形式驗(yàn)證。這些方法在傳統(tǒng)軟件上運(yùn)行良好,但是由于這些模型的規(guī)模和缺乏結(jié)構(gòu)性(可能包含數(shù)億個參數(shù)),想用這些方法來嚴(yán)格測試神經(jīng)網(wǎng)絡(luò)等機(jī)器學(xué)習(xí)模型是非常困難的。開發(fā)能夠確保機(jī)器學(xué)習(xí)系統(tǒng)在部署時穩(wěn)健性的新方法勢在必行。

程序員的角度來看,與系統(tǒng)的規(guī)范(即預(yù)期功能)不一致的任何行為都屬于bug。DeepMind不僅評估了機(jī)器學(xué)習(xí)系統(tǒng)的技術(shù)是否與訓(xùn)練集和測試集一致,還評估了這些技術(shù)的作用與系統(tǒng)的期望屬性的規(guī)范描述中是否一致。這些屬性可能包括對輸入中足夠小的擾動的穩(wěn)健性,避免災(zāi)難性故障的安全約束,或產(chǎn)生符合物理定律的預(yù)測能力等。

本文討論機(jī)器學(xué)習(xí)社區(qū)面臨的三個重要技術(shù)挑戰(zhàn),因?yàn)槲覀児餐铝τ趪?yán)格開發(fā)和部署與所需規(guī)格可靠一致的機(jī)器學(xué)習(xí)系統(tǒng):

高效測試實(shí)際功能與屬性規(guī)范的一致性。我們探索有效的方法,來測試機(jī)器學(xué)習(xí)系統(tǒng)是否與設(shè)計(jì)者和系統(tǒng)用戶所期望的屬性相一致。揭示二者差異的一種方法是在評估期間系統(tǒng)地搜索最壞情況下的結(jié)果。

訓(xùn)練機(jī)器學(xué)習(xí)模型,使其產(chǎn)生屬性一致的預(yù)測。即使有了大量的訓(xùn)練數(shù)據(jù),標(biāo)準(zhǔn)的機(jī)器學(xué)習(xí)算法也可以產(chǎn)生與理想屬性不一致的預(yù)測模型。這要求我們重新考慮訓(xùn)練算法,這些算法不僅能夠很好地?cái)M合訓(xùn)練數(shù)據(jù),而且要與屬性列表上的要求保持一致。

正式證明機(jī)器學(xué)習(xí)模型是規(guī)范性一致的。雖然形式驗(yàn)證領(lǐng)域幾十年來一直在研究這種算法,也取得了令人矚目的進(jìn)展,但很難輕易擴(kuò)展到現(xiàn)代深度學(xué)習(xí)領(lǐng)域。

測試規(guī)范一致性

面對對抗性實(shí)例下的穩(wěn)健性問題,是深度學(xué)習(xí)中研究相對充分的問題。這項(xiàng)工作的一個主要主題是評估模型在強(qiáng)對抗性攻擊下的穩(wěn)健性,以及設(shè)計(jì)可有效分析的透明模型。我們發(fā)現(xiàn)許多模型在弱對抗下進(jìn)行評估時看上去很穩(wěn)健。但遇見針對更強(qiáng)的對抗時,精度幾乎下降為零。

目前大多數(shù)研究都集中在監(jiān)督學(xué)習(xí)(主要是圖像分類)的背景下,但是需要將這些想法擴(kuò)展到其他條件。在最近關(guān)于對抗災(zāi)難性故障方法的研究中,我們將這些想法用于測試確保關(guān)鍵設(shè)置的強(qiáng)化學(xué)習(xí)智能體上。開發(fā)這類自主系統(tǒng)的挑戰(zhàn)之一是,由于一個錯誤就可能產(chǎn)生嚴(yán)重后果,因此即使非常小的失敗概率也是不可接受的。

我們的目標(biāo)是設(shè)計(jì)一個“對手”,能讓我們提前檢測這些故障。與圖像分類器一樣,針對弱攻擊進(jìn)行評估,很容易產(chǎn)生錯誤的安全感。我們?yōu)閺?qiáng)化學(xué)習(xí)對抗性測試開發(fā)了兩種互補(bǔ)的方法。首先,使用無衍生優(yōu)化來對智能體的預(yù)期回報(bào)進(jìn)行最小化。接著,學(xué)習(xí)一種對抗值函數(shù),該函數(shù)根據(jù)經(jīng)驗(yàn)預(yù)測哪種情況最有可能導(dǎo)致智能體的失敗。然后使用此學(xué)習(xí)函數(shù)進(jìn)行優(yōu)化,將評估重點(diǎn)放在最有問題的輸入上。這些方法只構(gòu)成了豐富且不斷增長的潛在算法空間的一小部分,我們對能夠?qū)χ悄荏w的未來發(fā)展進(jìn)行嚴(yán)格評估感到興奮。

這兩種方法已經(jīng)比隨機(jī)測試產(chǎn)生了很大的改進(jìn),可以在幾分鐘內(nèi)檢測到過去需要花費(fèi)數(shù)天才能發(fā)現(xiàn)(甚至完全無法發(fā)現(xiàn))的問題。我們還發(fā)現(xiàn),對抗性測試可能會發(fā)現(xiàn)我們的智能體出現(xiàn)了與隨機(jī)測試集的評估結(jié)果性質(zhì)不同的行為。

在對抗性環(huán)境下,我們發(fā)現(xiàn)執(zhí)行3D導(dǎo)航任務(wù)的智能體仍然無法在十分簡單的迷宮中完全找到目標(biāo),即使它們在非對抗性環(huán)境下的平均表現(xiàn)已經(jīng)和人類相當(dāng)。此外,我們需要設(shè)計(jì)能夠抵御自然故障的系統(tǒng)。

在隨機(jī)抽樣中,我們幾乎從來沒觀察到具有高失敗概率的地圖,但是在對抗性測試下,這樣的地圖確實(shí)存在。即使在去掉了許多墻壁之后,智能體在這些地圖下的失敗概率仍然很高。

訓(xùn)練規(guī)范一致性的模型

對抗性測試是為了找到違背規(guī)范的反例。因此往往會高估模型與這些規(guī)范的一致性。在數(shù)學(xué)上,規(guī)范是必須在神經(jīng)網(wǎng)絡(luò)的輸入和輸出之間保持的某種關(guān)系。這種關(guān)系可以通過某些關(guān)鍵輸入和輸出參數(shù)的上限和下限的形式來體現(xiàn)。

受此啟發(fā),DeepMind的團(tuán)隊(duì)和其他團(tuán)隊(duì)研究了與對抗性測試程序無關(guān)的算法(用于評估規(guī)范一致性。這可以從幾何學(xué)上理解 - 我們可以約束給定的一組輸入的情況下,限制輸出空間來最嚴(yán)重地違反規(guī)范。如果此界限范圍相對于網(wǎng)絡(luò)參數(shù)是可微分的并且可以快速計(jì)算,則可以在訓(xùn)練期間使用,通過網(wǎng)絡(luò)的每個層傳播原始邊界框。

結(jié)果表明,區(qū)間界限傳播是快速有效的,并且可以獲得強(qiáng)有力的結(jié)果。尤其是能夠降低MNIST和CIFAR-10數(shù)據(jù)集上的圖像分類中的現(xiàn)有技術(shù)的錯誤率。

未來的下一個前沿領(lǐng)域?qū)⑹菍W(xué)習(xí)正確的幾何抽象,計(jì)算更嚴(yán)格的輸出空間過度概率。我們還希望訓(xùn)練網(wǎng)絡(luò)與更復(fù)雜的規(guī)范一致,捕獲理想的行為,比如上文提到的不變性和與物理定律的一致性。

形式驗(yàn)證

嚴(yán)格的測試和訓(xùn)練有助于構(gòu)建強(qiáng)大的機(jī)器學(xué)習(xí)系統(tǒng)。但是,沒有多少測試可以完全保證系統(tǒng)的行為符合我們的要求。在大模型中,由于輸入擾動的選擇極為龐大,因此列舉給定輸入集的所有可能輸出(例如對圖像的無窮小的擾動)是難以處理。但是,與訓(xùn)練一樣,我們可以通過在輸出集上設(shè)置幾何邊界來找到更有效的方法。正式驗(yàn)證是DeepMind正在進(jìn)行的研究的主題。

機(jī)器學(xué)習(xí)社區(qū)已經(jīng)有了幾個關(guān)于如何計(jì)算網(wǎng)絡(luò)輸出空間上的精確幾何邊界的有趣思路。我們的方法基于優(yōu)化和二元性,將驗(yàn)證問題轉(zhuǎn)化為優(yōu)化問題。。下圖以圖形方式說明了該方法。

這種方法使我們能夠?qū)Ⅱ?yàn)證算法的適用性擴(kuò)展到更一般的網(wǎng)絡(luò)(激活函數(shù),體系結(jié)構(gòu)),更一般性的規(guī)范和更復(fù)雜的深度學(xué)習(xí)模型(生成模型,神經(jīng)過程等)

未來方向

我們需要做更多的工作來構(gòu)建自動化工具,以確保現(xiàn)實(shí)世界中的AI系統(tǒng)做出“正確的事情”,為實(shí)現(xiàn)這個目標(biāo),未來需要在這些方向上發(fā)力:

學(xué)習(xí)對抗性評估和驗(yàn)證:隨著AI系統(tǒng)的擴(kuò)展和復(fù)雜度的提升,設(shè)計(jì)適合AI模型的對抗性評估和驗(yàn)證算法將變得越來越困難。如果我們可以利用AI的強(qiáng)大功能來推進(jìn)評估和驗(yàn)證,那么這個過程可以大大加快,并實(shí)現(xiàn)擴(kuò)展。

開發(fā)用于對抗性評估和驗(yàn)證的公開工具:為AI工程師和從業(yè)者提供易于使用的工具是非常重要的,可以在AI系統(tǒng)造成廣泛的負(fù)面影響之前闡明其可能的故障模式。這需要一定程度的對抗性評估和驗(yàn)證算法的標(biāo)準(zhǔn)化。

擴(kuò)大對抗性實(shí)例的應(yīng)用范圍:到目前為止,大多數(shù)關(guān)于對抗性實(shí)例的研究都集中在對小擾動(通常是圖像)的模型不變性上。這為開發(fā)對抗性評估,穩(wěn)健性學(xué)習(xí)和驗(yàn)證方法提供了極好的測試平臺。我們已經(jīng)開始探索與現(xiàn)實(shí)世界直接相關(guān)的屬性的替代規(guī)范,并對未來在這方面的研究感到興奮。

學(xué)習(xí)規(guī)范:在AI系統(tǒng)中獲得“正確”行為的規(guī)范通常難以精確表述。當(dāng)我們構(gòu)建能夠展示復(fù)雜行為并在非結(jié)構(gòu)化環(huán)境中行動的越來越智能的代理時,將需要構(gòu)建可以使用部分人類規(guī)范并從評估反饋中學(xué)習(xí)進(jìn)一步規(guī)范的系統(tǒng)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8492

    瀏覽量

    134088
  • DEBUG
    +關(guān)注

    關(guān)注

    3

    文章

    94

    瀏覽量

    20371
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5554

    瀏覽量

    122480

原文標(biāo)題:DeepMind新研究:三招解決機(jī)器學(xué)習(xí)模型debug難題

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?288次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比,傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?1038次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)方法</b>和應(yīng)用指導(dǎo)

    大華股份榮獲中國創(chuàng)新方法大賽一等獎

    近日,備受矚目的2024年中國創(chuàng)新方法大賽全國總決賽在重慶圓滿落下帷幕。此次大賽由中國科協(xié)與重慶市人民政府聯(lián)合主辦,吸引了眾多創(chuàng)新企業(yè)和團(tuán)隊(duì)參與,共同展示創(chuàng)新成果,角逐榮譽(yù)獎項(xiàng)。 在這場創(chuàng)新盛宴中
    的頭像 發(fā)表于 12-27 14:50 ?478次閱讀

    基于遺傳算法的QD-SOA設(shè)計(jì)新方法

    了QD-SOA的設(shè)計(jì),提出了一種基于遺傳算法的QD-SOA設(shè)計(jì)新方法。由于具有用于設(shè)計(jì)的模型是必不可少的,因此在第一步中獲得數(shù)值模型。然后,利用從數(shù)值模型中采樣的訓(xùn)練數(shù)據(jù)建立人工神經(jīng)網(wǎng)
    的頭像 發(fā)表于 12-17 09:58 ?383次閱讀
    基于遺傳算法的QD-SOA設(shè)計(jì)<b class='flag-5'>新方法</b>

    大華股份榮獲2024年中國創(chuàng)新方法大賽一等獎

    近日,由中國科協(xié)、重慶市人民政府舉辦的2024年中國創(chuàng)新方法大賽全國總決賽在重慶落下帷幕。大華股份靈活運(yùn)用創(chuàng)新方法、突破行業(yè)性技術(shù)難題,憑借“不懼強(qiáng)光,分毫必現(xiàn),基于TRIZ的強(qiáng)逆光銳捕技術(shù)”項(xiàng)目,斬獲全國一等獎。
    的頭像 發(fā)表于 12-04 17:19 ?670次閱讀

    利用全息技術(shù)在硅晶圓內(nèi)部制造納米結(jié)構(gòu)的新方法

    本文介紹了一種利用全息技術(shù)在硅晶圓內(nèi)部制造納米結(jié)構(gòu)的新方法。 研究人員提出了一種在硅晶圓內(nèi)部制造納米結(jié)構(gòu)的新方法。傳統(tǒng)上,晶圓上的微結(jié)構(gòu)加工,僅限于通過光刻技術(shù)在晶圓表面加工納米結(jié)構(gòu)。 然而,除了晶
    的頭像 發(fā)表于 11-18 11:45 ?676次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度學(xué)習(xí)
    的頭像 發(fā)表于 10-23 15:25 ?2690次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參
    的頭像 發(fā)表于 10-23 15:01 ?2376次閱讀

    保護(hù)4-20 mA,±20-mA模擬輸入的新方法

    電子發(fā)燒友網(wǎng)站提供《保護(hù)4-20 mA,±20-mA模擬輸入的新方法.pdf》資料免費(fèi)下載
    發(fā)表于 09-24 09:27 ?0次下載
    保護(hù)4-20 mA,±20-mA模擬輸入的<b class='flag-5'>新方法</b>

    實(shí)踐JLink 7.62手動增加新MCU型號支持新方法

    大家好,我是痞子衡,是正經(jīng)搞技術(shù)的痞子。今天痞子衡給大家分享的是實(shí)踐JLink 7.62手動增加新MCU型號支持新方法
    的頭像 發(fā)表于 08-08 15:25 ?1221次閱讀
    實(shí)踐JLink 7.62手動增加新MCU型號支持<b class='flag-5'>新方法</b>

    一種無透鏡成像的新方法

    使用OAM-HHG EUV光束對高度周期性結(jié)構(gòu)進(jìn)行成像的EUV聚光顯微鏡 為了研究微電子或光子元件中的納米級圖案,一種基于無透鏡成像的新方法可以實(shí)現(xiàn)近乎完美的高分辨率顯微鏡。 層析成像是一種強(qiáng)大的無
    的頭像 發(fā)表于 07-19 06:20 ?687次閱讀
    一種無透鏡成像的<b class='flag-5'>新方法</b>

    機(jī)器學(xué)習(xí)中的數(shù)據(jù)分割方法

    機(jī)器學(xué)習(xí)中,數(shù)據(jù)分割是一項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細(xì)探討機(jī)器學(xué)習(xí)中數(shù)據(jù)分
    的頭像 發(fā)表于 07-10 16:10 ?2957次閱讀

    如何理解機(jī)器學(xué)習(xí)中的訓(xùn)練集、驗(yàn)證集和測試

    理解機(jī)器學(xué)習(xí)中的訓(xùn)練集、驗(yàn)證集和測試集,是掌握機(jī)器學(xué)習(xí)核心概念和流程的重要一步。這三者不僅構(gòu)成了模型
    的頭像 發(fā)表于 07-10 15:45 ?6347次閱讀

    人工神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)機(jī)器學(xué)習(xí)模型的區(qū)別

    人工神經(jīng)網(wǎng)絡(luò)(ANN)與傳統(tǒng)機(jī)器學(xué)習(xí)模型之間的不同,包括其原理、數(shù)據(jù)處理能力、學(xué)習(xí)方法適用場景及未來發(fā)展趨勢等方面,以期為讀者提供一個全面
    的頭像 發(fā)表于 07-04 14:08 ?2490次閱讀

    深度學(xué)習(xí)模型優(yōu)化與調(diào)試方法

    深度學(xué)習(xí)模型在訓(xùn)練過程中,往往會遇到各種問題和挑戰(zhàn),如過擬合、欠擬合、梯度消失或爆炸等。因此,對深度學(xué)習(xí)模型進(jìn)行優(yōu)化與調(diào)試是確保其性能優(yōu)越的關(guān)鍵步驟。本文將從數(shù)據(jù)預(yù)處理、
    的頭像 發(fā)表于 07-01 11:41 ?1614次閱讀