女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一種新型基于多點(diǎn)預(yù)瞄的最優(yōu)路徑跟蹤控制方法

ml8z_IV_Technol ? 來源:lq ? 2019-01-07 17:03 ? 次閱讀

摘要:為在嵌入式控制器開發(fā)環(huán)境下提高智能車輛的路徑跟蹤精度,采用車輛動力學(xué)模型和多點(diǎn)道路預(yù)瞄模型,以 預(yù)瞄窗口內(nèi)的跟蹤偏差為目標(biāo)函數(shù),結(jié)合 LQR 最優(yōu)控制原理,提出了一種基于多點(diǎn)預(yù)瞄最優(yōu)控制路徑跟蹤控制方法。針對實(shí)車應(yīng)用,通過離線計(jì)算最優(yōu)增益的方法,提高算法實(shí)時性。在仿真及紅旗 H7 實(shí)車環(huán)境下進(jìn)行試驗(yàn),結(jié)果顯示,該方法在保證跟蹤精度的同時具有良好的算法實(shí)時性。

1.前言

路徑跟蹤作為自動駕駛系統(tǒng)中的關(guān)鍵執(zhí)行層控制技術(shù),是影響智能車輛安全性與舒適性的關(guān)鍵技術(shù)[1-3]。常見的路徑跟蹤方法按照使用模型不同可分為基于幾 何/運(yùn)動學(xué)模型的方法和基于動力學(xué)模型的方法,其中 基于幾何/運(yùn)動學(xué)模型的方法,通常將車輛簡化為四輪 機(jī)器人剛性結(jié)構(gòu),由于相對簡單計(jì)算量小,已有較多實(shí) 車應(yīng)用,如名古屋大學(xué)的自動駕駛開源項(xiàng)目Autoware 中使用的純跟蹤方法[4]。

基于動力學(xué)模型的方法,考慮車 輛輪胎側(cè)偏等動力學(xué)特性,通常結(jié)合最優(yōu)控制理論,如線性二次型調(diào)節(jié)器(LQR)[5]、模型預(yù)測控制(MPC)[6]等。百度的自動駕駛開源項(xiàng)目Apollo 中橫向控制器即提供了LQR 和MPC 兩種方法[7]。LQR 方法未考慮預(yù)瞄前方目標(biāo)路徑,易出現(xiàn)跟蹤偏差較大問題;MPC方法需要消耗大量計(jì)算資源,在車輛嵌入式控制器的計(jì)算環(huán)境中難以實(shí)現(xiàn)。而基于預(yù)瞄的LQR控制方法[8],既能夠綜合考慮前方路徑特征,又不需要在線優(yōu)化求解占用大量計(jì)算 資源,具有較強(qiáng)的嵌入式環(huán)境實(shí)車應(yīng)用價值。

因此,本文在文獻(xiàn)[8]LQR預(yù)瞄控制方法的基礎(chǔ)上, 提出了一種新型基于多點(diǎn)預(yù)瞄的最優(yōu)路徑跟蹤控制方 法,改進(jìn)了道路模型中的預(yù)瞄偏差計(jì)算方式,以及采用 離線計(jì)算最優(yōu)增益的方法,提高了算法的適應(yīng)性及實(shí)時 性,更加適合實(shí)車路徑跟蹤控制應(yīng)用。

2.車輛及道路預(yù)瞄模型

2.1車輛動力學(xué)模型

本文采用的車輛動力學(xué)模型如圖1 所示,假設(shè)車輛是一個在平面內(nèi)沿一定速度向前行駛的剛體,可通過前輪轉(zhuǎn)角進(jìn)行橫擺旋轉(zhuǎn)和側(cè)向平移運(yùn)動。

圖1 車輛動力學(xué)模型

通過如圖1 所示的幾何關(guān)系,可推導(dǎo)出前后軸的側(cè)偏角αf、αr關(guān)系式:

式中,y為車輛橫向位置;a、b分別為車輛質(zhì)心到前后軸的距離;ψ為車輛航向角;u為車輛縱向速度;δsw為轉(zhuǎn)向盤轉(zhuǎn)角;isteer為轉(zhuǎn)向傳動比。

然后由車輛前后軸的側(cè)偏剛度Cf、Cr ,可知前后軸的側(cè)向力Fvf、Fvr:

最后,根據(jù)牛頓第二定律進(jìn)行側(cè)向力和橫擺力矩分析即可得到式(5)所示的動力學(xué)狀態(tài)方程。

式中:

其中,M為整車質(zhì)量;I為車輛繞 Z軸橫擺的轉(zhuǎn)動慣量。

式(5)狀態(tài)方程為連續(xù)量,在控制器中采用的是離散數(shù)字控制,需要根據(jù)實(shí)際采樣時間T 對狀態(tài)方程進(jìn)行離散化處理,如式(6)所示:

式中:

由此狀態(tài)方程即可確定車輛在一定速度下轉(zhuǎn)向盤轉(zhuǎn)角作為控制量,對車輛橫向位置及橫擺角速度狀態(tài)產(chǎn)生的影響。

2.2 道路預(yù)瞄模型

圖2(a)所示的為文獻(xiàn)[8]所使用的道路預(yù)瞄模型,以道路在局部坐標(biāo)系下的未來n個周期的參考y軸方向橫向偏移作為道路狀態(tài)量,當(dāng)前車輛在局部坐標(biāo)系中的橫向坐標(biāo)為y,朝向角為ψ,假設(shè)車輛縱向速度u恒定,當(dāng)前車輛坐標(biāo)為 y,第一個道路狀態(tài)量即為 yr0,第二個狀態(tài)量即車輛沿 x 軸方向移動 uT 后,對應(yīng)的道路 y 坐標(biāo),即為圖中的yr1,以此類推再下一周期同樣x向移動uT,狀態(tài)量變?yōu)閥r2,yr3,yrn。

此模型采用的局部坐標(biāo)系方向固定不變,車體坐標(biāo) 系與局部坐標(biāo)系夾角位置關(guān)系隨著車輛運(yùn)動不斷變化, 當(dāng)車輛朝向角與x軸夾角過大時,車輛的每一時刻x向參考位置的變化將與uT 差別較大,使得算法對于這種情況的適應(yīng)性較差。因此本文的局部坐標(biāo)系直接采用車體坐標(biāo)系作為參考,車輛的初始y向坐標(biāo)為0,航向角ψ也為0,這樣車輛沿x軸的參考位置uT對應(yīng)橫向參考坐標(biāo)隨著車體坐標(biāo)系的不斷變化而不斷變化,縱向速度假設(shè)更加合理,算法適應(yīng)性更強(qiáng)。

圖2 道路預(yù)瞄關(guān)系圖

對于車輛而言,k時刻的道路狀態(tài)yrn即為k+1時刻的道路狀態(tài)yrn-1,只需將前一時刻的道路狀態(tài)整體向前移動一個周期,同時補(bǔ)充最后一時刻的狀態(tài)yr_n+1,可將道路狀態(tài)整理為如下矩陣形式:

式中:

3.LQR最優(yōu)預(yù)瞄控制

整合第2 章的車輛模型和道路預(yù)瞄模型的狀態(tài)方程(6)和(7),可得下式:

此狀態(tài)方程僅描述了車輛和道路間狀態(tài)量的變化關(guān)系,而車輛和道路則需要通過式(9)所示的目標(biāo)函數(shù)產(chǎn)生關(guān)聯(lián):

式中:

該目標(biāo)函數(shù)為LQR 標(biāo)準(zhǔn)的二次型形式,一共包含兩項(xiàng),第一項(xiàng)目標(biāo)為路徑跟蹤的橫向與角度的綜合偏差,C矩陣的第一行與式(8)的狀態(tài)相乘,即連接了車輛的y軸坐標(biāo)與道路參考點(diǎn)的y 軸坐標(biāo)差,得到車輛橫向偏差;第二行連接了車輛的航向角與道路朝向角的差, 得到車輛角度偏差,同時Q矩陣中的兩個元素q1和q2決定了橫向偏差與角度偏差的權(quán)重;第二項(xiàng)表示控制量轉(zhuǎn) 向盤轉(zhuǎn)角的懲罰項(xiàng),目的為減少轉(zhuǎn)向盤轉(zhuǎn)角輸出,提高系統(tǒng)穩(wěn)定性,R為該項(xiàng)權(quán)重標(biāo)量。

由上述目標(biāo)函數(shù)和線性狀態(tài)方程,即可構(gòu)成標(biāo)準(zhǔn)的離散LQR 控制問題,從而求得由最優(yōu)增益 K 和狀態(tài)量[X(k),yr(k)]T構(gòu)成的最優(yōu)控制量u(k):

最優(yōu)增益K=[R+BTPB]-1BTPA,其中P矩陣可通過代數(shù)黎卡提方程求解:

當(dāng)?shù)缆奉A(yù)瞄窗口較大時,上述矩陣維數(shù)將明顯增多, 求解黎卡提方程將消耗較多計(jì)算資源,在嵌入式硬件環(huán) 境中實(shí)時求解難度較大。通過對最優(yōu)增益矩陣中的元素 進(jìn)行分析,可以發(fā)現(xiàn)只有車速u是動態(tài)變化的,其他元素均為車輛固有參數(shù),因此,本文采用離線計(jì)算不同速度u下的增益矩陣K,然后通過在線查表的方式使用與當(dāng)前車速u最鄰近的離線增益K,然后與當(dāng)前車輛狀態(tài)、道路狀態(tài)[X(k),yr(k)]T按式(10)計(jì)算即可獲得控制輸出轉(zhuǎn)向盤轉(zhuǎn)角,大幅提升算法實(shí)時性。

4.仿真及實(shí)車驗(yàn)證

4.1仿真結(jié)果

為驗(yàn)證本文算法的跟蹤精度與算法實(shí)時性,在CarSim 和Simulink 聯(lián)合仿真的環(huán)境下,將本文方法與文獻(xiàn)[9]所提出的模型預(yù)測控制方法進(jìn)行了對比測試,仿真對比結(jié)果見圖3 和圖4。

仿真所使用的為CarSim中的車輛,其質(zhì)量為1 723 kg,轉(zhuǎn)動慣量為4175kg·m2,質(zhì)心距前后軸距分別為1.232m和1.468m,前后軸側(cè)偏剛度分別為119552N/rad和109 548 N/rad。

仿真試驗(yàn)工況選用雙移線軌跡進(jìn)行車輛路徑跟蹤能力測試。分別選用常規(guī)小側(cè)向力工況和達(dá)到路面附著極限的工況進(jìn)行仿真,縱向速度分別為 60km/h和80km/h,路面附著系數(shù)為1,控制周期為20ms,MPC控制器的預(yù)測時域和控制時域均為50,權(quán)重矩陣Q和R的取值與文獻(xiàn)[9]中保持一致;本文LQR控制器預(yù)瞄周期也為1s,權(quán)重矩陣系數(shù)q1=0.001,q2=0,R=1。

圖4 側(cè)向加速度仿真結(jié)果曲線

從路徑跟蹤結(jié)果中可以看出60km/h時LQR控制器與MPC控制器均能較好的跟蹤目標(biāo)路徑,其中LQR控制器的最大跟蹤偏差為0.36m,而MPC控制器的最大跟蹤偏差為0.64m;而圖4中可以看出最大側(cè)向加速度約為0.7g,尚未達(dá)到路面附著極限,提出的LQR控制器能夠較好地跟蹤目標(biāo)路徑;而在80km/h的仿真試驗(yàn)可以看出最大側(cè)向加速度達(dá)到1g左右,已經(jīng)達(dá)到了路面附著極限,LQR控制器由于不具有MPC控制器的側(cè)偏角約束,未能保持車輛穩(wěn)定性,出現(xiàn)側(cè)滑現(xiàn)象。另一方面,本文提出的LQR控制器與MPC控制器仿真單步運(yùn)行時間分別為8.5ms和89ms,LQR方法具有明顯的實(shí)時性優(yōu)勢。由此可見,本文提出的LQR控制器由于具有與MPC 控制器相同的優(yōu)化目標(biāo),較為適合實(shí)車在附著良好的且未達(dá)到附著極限的行駛工況下進(jìn)行實(shí)時控制。

4.2實(shí)車試驗(yàn)

實(shí)車控制器采用的是MicroAutoBox快速原型,LQR控制方法可在該平臺下良好地實(shí)時運(yùn)行,傳感器為RTK- IMU 組合導(dǎo)航記錄位姿,目標(biāo)路徑采用人工駕駛過程中錄制組合導(dǎo)航的位置姿態(tài)數(shù)據(jù),試驗(yàn)場地為一汽NBD 園區(qū)內(nèi),試驗(yàn)車輛為紅旗H7 摯途試驗(yàn)車,如圖5 所示。

圖5 紅旗H7 摯途試驗(yàn)車

園區(qū)內(nèi)試驗(yàn)最大車速為30km/h,覆蓋了長直線、長彎、環(huán)島和直角彎等城市道路典型工況,試驗(yàn)結(jié)果如圖6所示,整車最大側(cè)向加速度在0.2 g 以內(nèi),橫向控制偏差在0.35 m 以內(nèi),具有良好的跟蹤精度;以120 s 附近的過環(huán)島工況為例,轉(zhuǎn)向盤最大轉(zhuǎn)角為281°,路徑跟蹤的最大橫向偏差為0.28m,轉(zhuǎn)向盤轉(zhuǎn)動較為平穩(wěn)。

圖6 實(shí)車路徑跟蹤結(jié)果曲線

圖7所示為LQR控制器在彎曲道路換道工況下的實(shí)車路徑跟蹤結(jié)果圖,圖7a 所示為參考路徑和跟蹤路徑,車速及跟蹤的橫向偏差如圖7b所示,換道時車速約為60km/h,整體跟蹤偏差在0.3m以內(nèi),最大側(cè)向加速度約3.2m/s2。說明本文方法適合在實(shí)車嵌入式實(shí)時環(huán)境下,平穩(wěn)地控制車輛實(shí)現(xiàn)良好精度的路徑跟蹤功能。

圖7 彎曲道路換道工況路徑跟蹤結(jié)果圖

5.結(jié)束語

本文針對嵌入式控制器環(huán)境下的智能車輛路徑跟蹤問題,基于LQR 最優(yōu)控制方法并采用離線優(yōu)化的方式,提出了一種基于多點(diǎn)預(yù)瞄最優(yōu)路徑跟蹤控制方法, 構(gòu)建了車輛及道路預(yù)瞄模型。仿真及實(shí)車試驗(yàn)表明該 方法能夠適應(yīng)常規(guī)工況下實(shí)車路徑跟蹤控制,具有良好 的跟蹤精度。下一步研究將針對輪胎和路面附著極限 工況下,優(yōu)化輪胎模型,約束最終控制量輸出保證車輛 穩(wěn)定性,提高算法對極限工況的適應(yīng)能力。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2563

    文章

    52573

    瀏覽量

    763704
  • 控制器
    +關(guān)注

    關(guān)注

    114

    文章

    16968

    瀏覽量

    182902
  • 嵌入式
    +關(guān)注

    關(guān)注

    5141

    文章

    19532

    瀏覽量

    314975

原文標(biāo)題:基于多點(diǎn)預(yù)瞄最優(yōu)控制的智能車輛路徑跟蹤

文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    一種新型的電力負(fù)荷控制與監(jiān)測系統(tǒng)的設(shè)計(jì)方法

    本文著重給出了一種新型的電力負(fù)荷控制與監(jiān)測系統(tǒng)的設(shè)計(jì)方法。該方法在性能可靠、高精度、低功耗、小體積的基礎(chǔ)上,更能適應(yīng)負(fù)荷管理、電能分析、電量
    發(fā)表于 04-12 06:56

    一種結(jié)構(gòu)化道路環(huán)境中的視覺導(dǎo)航系統(tǒng)詳解

    根據(jù)結(jié)構(gòu)化道路環(huán)境的特點(diǎn)提出了一種將邊沿檢測和道路環(huán)境知識相結(jié)合的機(jī)器視覺算法 , 并結(jié)合基于行為響應(yīng)的路徑規(guī)劃方法和智能預(yù)
    發(fā)表于 09-25 07:23

    一種新型多點(diǎn)測溫系統(tǒng)的設(shè)計(jì)(基于DS18B20設(shè)計(jì)的多點(diǎn)測溫

    一種新型多點(diǎn)測溫系統(tǒng)的設(shè)計(jì)(基于DS18B20設(shè)計(jì)的多點(diǎn)測溫系統(tǒng)) 介紹DS18B20的基本特性,和基于DS18B20設(shè)計(jì)的多點(diǎn)測溫系統(tǒng)。
    發(fā)表于 10-15 23:50 ?2054次閱讀
    <b class='flag-5'>一種</b><b class='flag-5'>新型</b><b class='flag-5'>多點(diǎn)</b>測溫系統(tǒng)的設(shè)計(jì)(基于DS18B20設(shè)計(jì)的<b class='flag-5'>多點(diǎn)</b>測溫

    一種多點(diǎn)脈搏信號檢測方法

    一種多點(diǎn)脈搏信號檢測方法:
    發(fā)表于 03-30 15:41 ?22次下載
    <b class='flag-5'>一種</b><b class='flag-5'>多點(diǎn)</b>脈搏信號檢測<b class='flag-5'>方法</b>

    一種配電網(wǎng)拓?fù)?b class='flag-5'>跟蹤方法及其應(yīng)用

    為了滿足實(shí)時跟蹤的需求,在分析了3配電網(wǎng)拓?fù)?b class='flag-5'>跟蹤算法的基礎(chǔ)上,提出了一種電網(wǎng)全局以母線為節(jié)點(diǎn)遍歷和設(shè)備單元局部更新相結(jié)合的新型實(shí)時
    發(fā)表于 05-27 16:39 ?19次下載
    <b class='flag-5'>一種</b>配電網(wǎng)拓?fù)?b class='flag-5'>跟蹤</b><b class='flag-5'>方法</b>及其應(yīng)用

    一種新型SVPWM調(diào)制方法的研究與實(shí)現(xiàn)

    一種新型SVPWM調(diào)制方法的研究與實(shí)現(xiàn)。
    發(fā)表于 03-30 14:40 ?7次下載

    一種新型的電刷調(diào)整方法

    一種新型的電刷調(diào)整方法_周國玉
    發(fā)表于 01-02 16:09 ?0次下載

    一種新的光伏系統(tǒng)最大功率跟蹤控制方法_趙志

    一種新的光伏系統(tǒng)最大功率跟蹤控制方法_趙志
    發(fā)表于 01-08 10:18 ?2次下載

    一種基于最優(yōu)路徑的物流管理與監(jiān)督系統(tǒng)設(shè)計(jì)

    之間的響應(yīng),從而對配送過程進(jìn)行監(jiān)控。同時結(jié)合物流配送的油耗、路徑等各方面因素,提出一種最優(yōu)路徑配送算法,實(shí)現(xiàn)對物流配送的最佳路徑選擇。最后通
    發(fā)表于 11-13 14:23 ?4次下載
    <b class='flag-5'>一種</b>基于<b class='flag-5'>最優(yōu)</b><b class='flag-5'>路徑</b>的物流管理與監(jiān)督系統(tǒng)設(shè)計(jì)

    基于路徑跟蹤方法路徑規(guī)劃算法

    為解決拖掛式移動機(jī)器人系統(tǒng)路徑規(guī)劃算法精準(zhǔn)性低、穩(wěn)定性差和無法考慮系統(tǒng)間安全性等的問題,提出一種基于路徑跟蹤方法
    發(fā)表于 12-04 14:18 ?6次下載
    基于<b class='flag-5'>路徑</b><b class='flag-5'>跟蹤</b><b class='flag-5'>方法</b>的<b class='flag-5'>路徑</b>規(guī)劃算法

    自主泊車路徑規(guī)劃方法

    目前對泊車方法的相關(guān)研究僅適用于平行泊車和垂直泊車中的一種泊車場景。為此,提出通用性的自主泊車路徑規(guī)劃方法。該方法融合車輛運(yùn)動學(xué)約束和
    發(fā)表于 02-24 10:36 ?16次下載
    自主泊車<b class='flag-5'>路徑</b>規(guī)劃<b class='flag-5'>方法</b>

    一種多諧振最優(yōu)伺服控制算法在中頻電源設(shè)計(jì)中應(yīng)用

    針對標(biāo)準(zhǔn)線性二次型調(diào)節(jié)器( LQR)不能無靜差跟蹤參考以及比例諧振(PR)控制器帶非線性負(fù)載時輸出電壓總諧波畸變率過高的問題,提出一種多諧振最優(yōu)伺服
    發(fā)表于 04-24 17:23 ?8次下載
    <b class='flag-5'>一種</b>多諧振<b class='flag-5'>最優(yōu)</b>伺服<b class='flag-5'>控制</b>算法在中頻電源設(shè)計(jì)中應(yīng)用

    一種用于彈道跟蹤新型非線性制導(dǎo)邏輯

    一種用于彈道跟蹤新型非線性制導(dǎo)邏輯
    發(fā)表于 06-30 09:42 ?0次下載

    自動駕駛路徑跟蹤控制之純追蹤控制

    就在于, 軌跡還包含了時間信息,軌跡點(diǎn)也是一種路徑點(diǎn),它在路徑點(diǎn)的基礎(chǔ)上加入了 時間約束。 目前的主流軌跡跟蹤方法分為兩類: 基于幾何追蹤
    發(fā)表于 06-02 15:15 ?1次下載
    自動駕駛<b class='flag-5'>路徑</b><b class='flag-5'>跟蹤</b><b class='flag-5'>控制</b>之純追蹤<b class='flag-5'>控制</b>

    一種新型的最大功率跟蹤實(shí)現(xiàn)方法在太陽能充電器中的應(yīng)用

    電子發(fā)燒友網(wǎng)站提供《一種新型的最大功率跟蹤實(shí)現(xiàn)方法在太陽能充電器中的應(yīng)用.pdf》資料免費(fèi)下載
    發(fā)表于 11-02 11:12 ?4次下載
    <b class='flag-5'>一種</b><b class='flag-5'>新型</b>的最大功率<b class='flag-5'>跟蹤</b>實(shí)現(xiàn)<b class='flag-5'>方法</b>在太陽能充電器中的應(yīng)用