女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

淺析大數據與人工智能在2018年發展的趨勢

悟空智能科技 ? 來源:未知 ? 作者:胡薇 ? 2018-09-17 14:22 ? 次閱讀

馬特·圖爾克(Matt Turck),美國知名早期投資機構FirstMark的董事總經理,此前以早期成功投資Pinterest、Shopify、Airbnb、Riot Games、InVision和Tapad等超級獨角獸而著稱。

馬特還是紐約乃至美國知名的技術趨勢“布道者”,他發起組織了2大新趨勢分享社區,一個圍繞大數據和人工智能,名為Data Driven NYC;另一個圍繞前沿技術和新興計算平臺,叫Hardwired NYC。

2018人工智能&大數據全景圖

全景圖涵蓋了大數據人工智能行業的基礎架構、開源框架、數據API、數據資源、跨基礎結構分析、工業應用、企業應用、分析工具等,涵蓋有1095家大數據公司被納入全景圖。

出現在全景圖的一些關鍵公司上市了,尤其是Cloudera、MongoDB Pivotal和Zuora。在撰寫本文時,其他的正在準備上市,比如Elastic。

2018年人工智能大數據發展趨勢

2018 年,是數據世界中激動人心但又復雜多變的一年。一方面,數據技術(大數據、數據科學、機器學習、人工智能)繼續發展,變得越來越高效,在世界各地企業也得到了廣泛的應用。到目前為止,2018 年企業界的關鍵主題之一是“數字化轉型”,這絕非偶然。這個詞語對有些人來說可能有點奇怪,他們會嘀咕:這難道不是過去 25 年來一直發生的事兒嗎?但它恰恰反映出一個事實:許多傳統的行業和企業現在正全力投入到真正的數據驅動之旅。另一方面,更廣泛的公眾群體已經意識到數據的缺陷。無論是通過關于人工智能風險的公開辯論、劍橋分析公司(Cambridge Analytica)丑聞、大規模的Equifax數據泄露、與gdp相關的隱私討論,還是有關中國政府監控活動日益增多的報道,數據世界已開始暴露出一些更陰暗、更可怕的隱患。

1)基礎設施和分析工具

從行業的角度來看,數據生態系統仍然像以往一樣令人興奮和充滿活力,擁有豐富的創新初創企業、成熟的“規模擴展”,以及許多積極的公共技術供應商。最重要的是,許多大大小小的客戶都在大規模地應用這些技術,并從他們的努力中獲得不可否認的價值。

隨著用更現代的數據產品替代舊的IT技術的循環繼續,大數據市場(基礎設施、分析)似乎正在快速地在早期的大多數買家中循環,并逐漸過渡到傳統采用曲線的晚期。

此外,數據世界繼續朝著云的方向發展。考慮到大型公共云服務提供商(AWS、Azure、谷歌云平臺、IBM)的增長速度,每個季度都能產生數十億美元的收入,這真是令人震驚。這一趨勢引發了對供應商鎖定的持續關注,這可能為提供多云解決方案的初創公司提供機會。然而,到目前為止,采用多云策略的公司仍然傾向于依賴一個供應商作為他們的主要提供者。

隨著他們的業務不斷發展,大型云提供商通過其平臺(如 Amazon Neptune、Google AutoML 等)提供一系列廣泛的大數據、數據工程和機器學習工具,通常都制定了激進的定價策略,因而相互競爭越來越激烈,這一切都是為了吸引更多的開發者,因為他們真正的商業模式是數據存儲。隨著此類工具的范圍和成熟度不斷提高,這對數據技術領域產生了重大影響,可以說,初創企業更難與之競爭,至少在廣闊的、橫向的機遇面前就是如此。每年在大型云供應商會議上發布的產品公告列表(如 AWS re:Invent)會給初創企業帶來巨大的沖擊波,因為他們將云供應商與數十家風投支持的初創企業直接競爭。看看公眾市場如何應對即將到來的 Elastic(一家開源軟件企業)IPO 將是一件有趣的事。

然而,只要初創企業有足夠的差異化,他們還是有很多機會的。在這個領域中,很多企業都在快速擴展,在生態系統的基礎設施和分析部分中有許多特別有趣、快速增長的部分,包括流 / 實時、數據管控和數據結構 / 虛擬化。人們對人工智能的興趣激增,也帶來了在人工智能芯片、GPU 數據庫、人工智能 DevOps 工具以及能夠在企業中部署數據科學和機器學習的平臺上的巨大機遇,以及大量資金。

2)機器學習和人工智能

在人工智能研究領域,這無疑是瘋狂的一年,從 AlphaZero 的威力到新技術發布的驚人速度——生成對抗網絡的新形式,替代型的遞歸神經網絡,Geoff Hinton 的新膠囊網絡。像 NIPS 這樣的人工智能會議已經吸引了 8000 人,每天都有成千上萬的學術論文提交。

與此同時,對 AGI 的追求仍然難以捉摸,這也許是值得謝天謝地的事兒。目前人們對人工智能的興奮和恐懼,大部分源于 2012 年以來令人印象深刻的深度學習表現,但在人工智能研究領域中,有一種情緒在人們中日益彌漫開來:“接下來怎么辦?”因為有些人質疑深度學習的基礎(反向傳播),而其他一些人希望能夠超越他們所認為的“蠻力”方法(大量數據、大量算力),或許更傾向于采用更多基于神經科學的方法。

在人工智能研究領域,許多人非但不擔心機器人主宰世界,反而擔心,該領域持續的過度炒作可能最終會讓人失望,并導致另一個人工智能核冬天的到來。

然而,在人工智能研究之外,我們正處于一波深度學習在現實世界中的部署和應用浪潮的開端,涉及不同行業的語音識別、圖像分類、對象識別和語言等各種問題。如果說生態系統的基礎設施和分析部分已經發展到后期的大多數,那么對于企業和垂直人工智能應用來說,我們仍然是非常早期的先驅者。

盡管人工智能初創市場可以說已經顯示出最終降溫的跡象,但以深度學習為基礎的初創企業在一兩年前開始暴增的情況依然在繼續。整體規模和估值的期望仍然很高,但 我們肯定已經經過了這樣一個階段:大型互聯網企業會為了人才而高價收購早期人工智能初創企業。 與其他一些利用這種炒作的企業相比,市場中也出現了一些“真正”的人工智能初創企業。在 2014~2016 年期間成立的一些人工智能初創企業正開始初具規模,許多企業在醫療、金融、“工業 4.0”和后臺辦公自動化等跨行業和垂直領域提供越來越有趣的產品。在未來的幾年里,深度學習將繼續為現實世界的應用帶來巨大的價值,而專注于垂直方向的人工智能初創企業將面臨許多巨大的機遇。

這種持續的爆炸在很大程度上是一個全球現象,加拿大、法國、德國、英國和以色列都特別活躍。然而,中國在人工智能方面似乎處在一個完全不同的水平,有報道稱,政府主導的數據匯集規模令人難以置信(跨越了互聯網企業和市政當局),面部識別和人工智能芯片等領域的迅速發展,以及為初創企業提供數輪巨額融資:根據 CB Insights 的數據,中國僅占全球人工智能交易份額的 9%,但 2017 年在全球人工智能資金的比例接近 48%,高于 2016 年的 11%(見下面的一些例子)。

同樣,數據隱私(以及所有權和安全性)問題也正成為全球關注的主要問題。在互聯網發展的早期,數據隱私是為了保護我們在網上所做的事情,這是我們活動中相對較小的一部分。相應地,只有一小部分人真正在乎數據隱私的問題。隨著我們個人和職業生活的方方面面都通過越來越多的聯網設備連接到互聯網上,利害關系正在發生變化。人工智能能夠在大量數據集中發現異常、預測結果和識別人臉,這使數據隱私問題變得更加復雜。

另一個獨立但相關的問題是,這些數據中有很多都屬于大型互聯網企業 (GAFA) 所有。有些企業,比如 Facebook,已經被證明不是完美的管理者。盡管如此,這些數據為他們在生產更強大人工智能的競爭中提供了不公平的優勢。

針對這些問題,一個新興的主題是把區塊鏈看作是對抗人工智能風險的一種可能的方式,同時也是在 GAFA 之外的企業生產更為出色的人工智能的另一種方式。加密經濟被視為一種激勵個人提供個人數據的方式,也是機器學習工程師通過匿名處理這些數據建立模型的一種方式。這一切仍處于試驗階段,但一些早期的市場和網絡正在出現。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1804

    文章

    48704

    瀏覽量

    246472
  • 大數據
    +關注

    關注

    64

    文章

    8951

    瀏覽量

    139474

原文標題:2018年人工智能全景圖與發展趨勢分析

文章出處:【微信號:WUKOOAI,微信公眾號:悟空智能科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    廣電計量亮相2025廣州市人工智能與企業數據治理研討會

    的深度融合,共同探討數智融合的前沿趨勢發展機遇,吸引了廣州重點行業企業、電子信息行業、人工智能大數據產業的200多名企業代表參會,為廣州這座千
    的頭像 發表于 03-25 11:44 ?407次閱讀

    2025人工智能在工程領域的應用趨勢

    人工智能在重塑工程范式方面發揮著關鍵作用,它提供的工具和方法可提高各個領域的精度、效率和適應性。想要在人工智能競賽中保持領先的工程領導者應該關注四個關鍵領域的進步:生成式人工智能、驗證和確認、降階模型(ROM)和控制系統設計。
    的頭像 發表于 12-27 15:40 ?1329次閱讀

    人機環境系統智能化:人工智能的未來發展趨勢

    與機器、環境之間的高效協同和智能化互動。隨著AI技術的發展,特別是自然語言處理、計算機視覺、物聯網、大數據分析、機器學習等技術的成熟,人機環境系統智能的應用場景和實際價值正在不斷擴大。
    的頭像 發表于 12-09 14:05 ?791次閱讀

    集成電路與人工智能結合

    集成電路與人工智能的結合是當前科技發展的一個重要趨勢,這種結合為多個領域帶來了深遠的影響。以下是對集成電路與人工智能結合的分析: 一、集成電路在人工
    的頭像 發表于 11-19 10:05 ?1815次閱讀

    嵌入式和人工智能究竟是什么關系?

    與人工智能的結合,無疑是科技發展中的一場革命。在人工智能硬件加速中,嵌入式系統以其獨特的優勢和重要性,發揮著不可或缺的作用。通過深度學習和神經網絡等算法,嵌入式系統能夠高效地處理大量數據
    發表于 11-14 16:39

    人工智能云計算大數據三者關系

    人工智能、云計算與大數據之間的關系是緊密相連、相互促進的。大數據人工智能提供了豐富的訓練資源和驗證環境;云計算為大數據
    的頭像 發表于 11-06 10:03 ?900次閱讀

    ChatGPT 與人工智能的未來發展

    模型的出現,標志著人工智能在理解和生成人類語言方面取得了重大突破。 1. ChatGPT的工作原理 ChatGPT基于一種稱為“變換器”(Transformer)的架構,這種架構最初是為了處理序列數據而設計的,如文本或語音。變換器模型通過自注意力機制(Self-Atten
    的頭像 發表于 10-25 16:30 ?2407次閱讀

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    、優化等方面的應用有了更清晰的認識。特別是書中提到的基于大數據和機器學習的能源管理系統,通過實時監測和分析能源數據,實現了能源的高效利用和智能化管理。 其次,第6章通過多個案例展示了人工智能在
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    閱讀這一章后,我深感人工智能與生命科學的結合正引領著一場前所未有的科學革命,以下是我個人的讀后感: 1. 技術革新與生命科學進步 這一章詳細闡述了人工智能如何通過其強大的數據處理和分析能力,加速生命科學
    發表于 10-14 09:21

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    人工智能:科學研究的加速器 第一章清晰地闡述了人工智能作為科學研究工具的強大功能。通過機器學習、深度學習等先進技術,AI能夠處理和分析海量數據,發現傳統方法難以捕捉的模式和規律。這不僅極大地提高了
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    是一些未來發展趨勢: 市場規模持續增長 :據多家研究機構和公司的預測,RISC-V的市場規模將持續增長。到2030,RISC-V處理器有望占據全球市場近四分之一的份額。這將為RISC-V在人工智能
    發表于 09-28 11:00

    智能制造與人工智能的區別

    智能制造與人工智能在定義、技術組成、應用領域以及發展重點等方面存在明顯的區別。
    的頭像 發表于 09-15 14:27 ?1655次閱讀

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    大力發展AI for Science的原因。 第2章從科學研究底層的理論模式與主要困境,以及人工智能三要素(數據、算法、算力)出發,對AI for Science的技術支撐進行解讀。 第3章介紹了在
    發表于 09-09 13:54

    串口屏與人工智能的結合

    著重要作用。而人工智能技術的融入,則為串口屏賦予了“智慧”的大腦,使其不僅能夠高效展示信息,還能進行數據分析、智能決策,乃至實現更加人性化的人機交互。本文將深入探討串口屏如何與人工智能
    的頭像 發表于 08-16 12:29 ?1596次閱讀

    FPGA在人工智能中的應用有哪些?

    定制化的硬件設計,提高了硬件的靈活性和適應性。 綜上所述,FPGA在人工智能領域的應用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應用場景進行定制化計算,為人工智能技術的發展提供有力支持。
    發表于 07-29 17:05