女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大模型訓(xùn)練框架(五)之Accelerate

深圳市賽姆烯金科技有限公司 ? 來(lái)源:深圳市賽姆烯金科技有限 ? 2025-01-14 14:24 ? 次閱讀

Hugging Face 的 Accelerate1是一個(gè)用于簡(jiǎn)化和加速深度學(xué)習(xí)模型訓(xùn)練的庫(kù),它支持在多種硬件配置上進(jìn)行分布式訓(xùn)練,包括 CPUGPU、TPU 等。Accelerate 允許用戶(hù)輕松切換不同的并行策略,同時(shí)它還支持混合精度訓(xùn)練,可以進(jìn)一步提升訓(xùn)練效率。

1. 導(dǎo)入

Accelerate只需添加四行代碼,即可在任何分布式配置中運(yùn)行相同的 PyTorch 代碼!讓大規(guī)模訓(xùn)練和推理變得簡(jiǎn)單、高效且適應(yīng)性強(qiáng)。

+fromaccelerateimportAccelerator
+ accelerator = Accelerator()

+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(
+   model, optimizer, training_dataloader, scheduler
+ )

forbatchintraining_dataloader:
   optimizer.zero_grad()
   inputs, targets = batch
   inputs = inputs.to(device)
   targets = targets.to(device)
   outputs = model(inputs)
   loss = loss_function(outputs, targets)
+   accelerator.backward(loss)
   optimizer.step()
   scheduler.step()

2. Accelerate的特點(diǎn)

1.分布式訓(xùn)練支持:Accelerate 支持在單個(gè)節(jié)點(diǎn)或多個(gè)節(jié)點(diǎn)上進(jìn)行分布式訓(xùn)練,包括多CPU、多GPU和TPU設(shè)置。它抽象出了與分布式訓(xùn)練相關(guān)的樣板代碼,使您可以專(zhuān)注于訓(xùn)練邏輯而不必?fù)?dān)心通信和同步問(wèn)題。

2.混合精度訓(xùn)練支持:Accelerate 提供了與混合精度訓(xùn)練(如半精度浮點(diǎn)數(shù))相關(guān)的工具和優(yōu)化。通過(guò)使用混合精度訓(xùn)練,可以在幾乎不降低模型性能的同時(shí)減少內(nèi)存使用和計(jì)算成本。

3.設(shè)備放置和管理:Accelerate 自動(dòng)處理設(shè)備放置,將數(shù)據(jù)和模型移動(dòng)到正確的設(shè)備上,以便充分利用可用的計(jì)算資源。這簡(jiǎn)化了跨設(shè)備進(jìn)行訓(xùn)練的過(guò)程,并幫助避免手動(dòng)管理設(shè)備分配的復(fù)雜性。

4.高度集成:Accelerate 可與 PyTorch 生態(tài)系統(tǒng)中的其他工具和庫(kù)無(wú)縫集成。它與常用的 PyTorch 數(shù)據(jù)加載器和優(yōu)化器兼容,并且可以與 DeepSpeed、Megatron-LM 和 PyTorch Fully Sharded Data Parallel (FSDP) 等擴(kuò)展一起使用。

5.可配置的 CLI 工具:Accelerate 提供了一個(gè)命令行界面 (CLI) 工具,使您能夠方便地配置和測(cè)試訓(xùn)練環(huán)境,而無(wú)需手動(dòng)編寫(xiě)啟動(dòng)腳本。

6.支持多種硬件:Accelerate 支持 CPU、GPU、TPU,以及支持混合精度訓(xùn)練的硬件設(shè)備,如 FP16/BFloat16、具有 Transformer Engine 的 FP8 混合精度。

7.簡(jiǎn)化代碼遷移:Accelerate 允許用戶(hù)在幾乎不更改代碼的情況下,將單機(jī)訓(xùn)練轉(zhuǎn)換為分布式訓(xùn)練,從而提高模型訓(xùn)練的速度和效率。

8.支持多種訓(xùn)練方式:Accelerate 支持 CPU/單GPU (TPU)/多GPU(TPU) DDP模式/fp32/fp16 等多種訓(xùn)練方式。

3. 對(duì)其它框架的支持

Accelerate 提供了一種簡(jiǎn)單且靈活的方式來(lái)加速和擴(kuò)展 PyTorch 訓(xùn)練腳本,而無(wú)需編寫(xiě)冗長(zhǎng)的樣板代碼。以下是 Accelerate 與 PyTorch 生態(tài)系統(tǒng)中其他工具和庫(kù)集成的一些具體展開(kāi):

1.與 PyTorch Fully Sharded Data Parallel (FSDP) 的集成: FSDP 是 PyTorch 中的一種數(shù)據(jù)并行技術(shù),它允許模型的參數(shù)在多個(gè) GPU 上進(jìn)行分片存儲(chǔ),從而減少單個(gè) GPU 的內(nèi)存壓力。Accelerate 提供了對(duì) FSDP 的支持,使得用戶(hù)可以更容易地在 PyTorch 中實(shí)現(xiàn) FSDP 數(shù)據(jù)并行。

2.與 DeepSpeed 的集成: Accelerate 允許用戶(hù)通過(guò) DeepSpeedPlugin 來(lái)利用 DeepSpeed 的功能,如 ZeRO 優(yōu)化技術(shù)。用戶(hù)可以在 Accelerate 配置文件中指定 DeepSpeed 的配置,如zero_stage和gradient_accumulation_steps,以及是否使用混合精度訓(xùn)練等。這樣,用戶(hù)可以在不改變?cè)?PyTorch 訓(xùn)練代碼的情況下,通過(guò) Accelerate 來(lái)實(shí)現(xiàn) DeepSpeed 的優(yōu)化策略。

3.與 Megatron-LM 的集成: Megatron-LM 是一個(gè)用于訓(xùn)練大規(guī)模 Transformer 模型的庫(kù),它支持模型并行和數(shù)據(jù)并行。Accelerate 提供了對(duì) Megatron-LM 的支持,允許用戶(hù)在 Megatron-LM 的基礎(chǔ)上使用 Accelerate 的分布式訓(xùn)練功能。

截至本文完稿時(shí)(2024/10/14),Accelerate對(duì)其它框架的支持主要在DP上,因?yàn)锳ccelerate暫時(shí)沒(méi)有 PP 和 TP。

以下是各種框架對(duì)并行策略(截至2024/10/12)的支持情況:

框架 DP PP TP 3D并行
Pytorch(FSDP)
DeepSpeed
Megatron-LM
Accelerate

參考

[1] Accelerate: https://huggingface.co/docs/accelerate/index

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5554

    瀏覽量

    122491
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3030

    瀏覽量

    3832

原文標(biāo)題:大模型訓(xùn)練框架(五)Accelerate

文章出處:【微信號(hào):深圳市賽姆烯金科技有限公司,微信公眾號(hào):深圳市賽姆烯金科技有限公司】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    百度飛槳框架3.0正式版發(fā)布

    模型訓(xùn)練成本高?推理效率低?硬件適配難? 4月1日,百度發(fā)布 飛槳框架3.0正式版 !大特性專(zhuān)為大模型設(shè)計(jì)。 作為大
    的頭像 發(fā)表于 04-02 19:03 ?580次閱讀
    百度飛槳<b class='flag-5'>框架</b>3.0正式版發(fā)布

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過(guò)大,有無(wú)解決方案?
    發(fā)表于 03-11 07:18

    GPU是如何訓(xùn)練AI大模型

    在AI模型訓(xùn)練過(guò)程中,大量的計(jì)算工作集中在矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長(zhǎng)的。接下來(lái),AI部落小編帶您了解GPU是如何訓(xùn)練AI大模型的。
    的頭像 發(fā)表于 12-19 17:54 ?644次閱讀

    大語(yǔ)言模型開(kāi)發(fā)框架是什么

    大語(yǔ)言模型開(kāi)發(fā)框架是指用于訓(xùn)練、推理和部署大型語(yǔ)言模型的軟件工具和庫(kù)。下面,AI部落小編為您介紹大語(yǔ)言模型開(kāi)發(fā)
    的頭像 發(fā)表于 12-06 10:28 ?468次閱讀

    什么是大模型、大模型是怎么訓(xùn)練出來(lái)的及大模型作用

    本文通俗簡(jiǎn)單地介紹了什么是大模型、大模型是怎么訓(xùn)練出來(lái)的和大模型的作用。 ? 什么是大模型模型
    的頭像 發(fā)表于 11-25 09:29 ?1.3w次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓(xùn)練</b>出來(lái)的及大<b class='flag-5'>模型</b>作用

    如何訓(xùn)練自己的LLM模型

    訓(xùn)練自己的大型語(yǔ)言模型(LLM)是一個(gè)復(fù)雜且資源密集的過(guò)程,涉及到大量的數(shù)據(jù)、計(jì)算資源和專(zhuān)業(yè)知識(shí)。以下是訓(xùn)練LLM模型的一般步驟,以及一些關(guān)鍵考慮因素: 定義目標(biāo)和需求 : 確定你的L
    的頭像 發(fā)表于 11-08 09:30 ?1399次閱讀

    PyTorch GPU 加速訓(xùn)練模型方法

    在深度學(xué)習(xí)領(lǐng)域,GPU加速訓(xùn)練模型已經(jīng)成為提高訓(xùn)練效率和縮短訓(xùn)練時(shí)間的重要手段。PyTorch作為一個(gè)流行的深度學(xué)習(xí)框架,提供了豐富的工具和
    的頭像 發(fā)表于 11-05 17:43 ?1265次閱讀

    ai大模型和ai框架的關(guān)系是什么

    AI大模型和AI框架是人工智能領(lǐng)域中兩個(gè)重要的概念,它們之間的關(guān)系密切且復(fù)雜。 AI大模型的定義和特點(diǎn) AI大模型是指具有大量參數(shù)的深度學(xué)習(xí)模型
    的頭像 發(fā)表于 07-16 10:07 ?7.5w次閱讀

    AI大模型與AI框架的關(guān)系

    多個(gè)領(lǐng)域取得顯著成果。而AI框架則是為開(kāi)發(fā)和訓(xùn)練AI模型提供的一套標(biāo)準(zhǔn)接口、特性庫(kù)和工具包,它集成了算法的封裝、數(shù)據(jù)的調(diào)用以及計(jì)算資源的使用,是AI算法開(kāi)發(fā)的必備工具。
    的頭像 發(fā)表于 07-15 11:42 ?1709次閱讀

    大語(yǔ)言模型的預(yù)訓(xùn)練

    能力,逐漸成為NLP領(lǐng)域的研究熱點(diǎn)。大語(yǔ)言模型的預(yù)訓(xùn)練是這一技術(shù)發(fā)展的關(guān)鍵步驟,它通過(guò)在海量無(wú)標(biāo)簽數(shù)據(jù)上進(jìn)行訓(xùn)練,使模型學(xué)習(xí)到語(yǔ)言的通用知識(shí),為后續(xù)的任務(wù)微調(diào)奠定基礎(chǔ)。本文將深入探討大
    的頭像 發(fā)表于 07-11 10:11 ?895次閱讀

    人臉識(shí)別模型訓(xùn)練流程

    人臉識(shí)別模型訓(xùn)練流程是計(jì)算機(jī)視覺(jué)領(lǐng)域中的一項(xiàng)重要技術(shù)。本文將詳細(xì)介紹人臉識(shí)別模型訓(xùn)練流程,包括數(shù)據(jù)準(zhǔn)備、模型選擇、
    的頭像 發(fā)表于 07-04 09:19 ?1769次閱讀

    人臉識(shí)別模型訓(xùn)練失敗原因有哪些

    人臉識(shí)別模型訓(xùn)練失敗的原因有很多,以下是一些常見(jiàn)的原因及其解決方案: 數(shù)據(jù)集質(zhì)量問(wèn)題 數(shù)據(jù)集是訓(xùn)練人臉識(shí)別模型的基礎(chǔ)。如果數(shù)據(jù)集存在質(zhì)量問(wèn)題,將直接影響
    的頭像 發(fā)表于 07-04 09:17 ?1251次閱讀

    人臉識(shí)別模型訓(xùn)練是什么意思

    人臉識(shí)別模型訓(xùn)練是指通過(guò)大量的人臉數(shù)據(jù),使用機(jī)器學(xué)習(xí)或深度學(xué)習(xí)算法,訓(xùn)練出一個(gè)能夠識(shí)別和分類(lèi)人臉的模型。這個(gè)模型可以應(yīng)用于各種場(chǎng)景,如安防監(jiān)
    的頭像 發(fā)表于 07-04 09:16 ?1204次閱讀

    預(yù)訓(xùn)練模型的基本原理和應(yīng)用

    預(yù)訓(xùn)練模型(Pre-trained Model)是深度學(xué)習(xí)和機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)重要概念,尤其是在自然語(yǔ)言處理(NLP)和計(jì)算機(jī)視覺(jué)(CV)等領(lǐng)域中得到了廣泛應(yīng)用。預(yù)訓(xùn)練模型指的是在大
    的頭像 發(fā)表于 07-03 18:20 ?4189次閱讀

    深度學(xué)習(xí)模型訓(xùn)練過(guò)程詳解

    深度學(xué)習(xí)模型訓(xùn)練是一個(gè)復(fù)雜且關(guān)鍵的過(guò)程,它涉及大量的數(shù)據(jù)、計(jì)算資源和精心設(shè)計(jì)的算法。訓(xùn)練一個(gè)深度學(xué)習(xí)模型,本質(zhì)上是通過(guò)優(yōu)化算法調(diào)整模型參數(shù),
    的頭像 發(fā)表于 07-01 16:13 ?2438次閱讀