女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

三種最佳實踐來應對機器學習和人工智能帶來的挑戰

Micron美光科技 ? 2017-12-23 09:16 ? 次閱讀

2016年,“機器學習”還只是被Gartner 視為一個“流行詞”,到如今,它已發展成為幾乎所有 IT 人士都在思考、探索或執行的一件事。毫無疑問,基于數據的分析和預測(機器從信息資源中學習,然后通知業務部門及其他部門并影響其行動)已經是當今迅速增長的最新、最熱門的技術領域之一。但對于那些正在進入機器學習領域的參與者來說,理想和現實之間仍無法平衡;正如每個不斷發展的新興事業一樣,基礎設施之水既能載舟,亦能覆舟。

Gartner已經確定了三種主要的最佳實踐,基礎設施和運營領導者在幫助所在組織準備應對機器學習 (ML) 和人工智能 (AI) 帶來的挑戰時,可以考慮采用這三種最佳實踐:

1. 采用模塊化訪問,實現高效的數據管道——根據 Gartner 的研究,“最終用戶表示,在典型項目中,數據準備和管理占去了將近 75% 到 85% 的機器學習管道。”建議在整個組織內執行更有效的數據清理、轉換和整合。

2. 制定高效的機器學習模型交付策略——該評論指出:“I&O 領導者可以通過訪問模型、功能和預測存儲庫來顯著加快其機器學習管道的速度。”這有助于縮小實驗級和生產級系統之間的資源差距。

3. 提供可擴展的計算基礎設施——Gartner 指出:“機器學習管道中的第二大時間密集型部分通常是模型工程設計階段。”同樣,建議采取的措施是針對需要聚集的核心參與者,將數據科學家、業務專家和軟件工程師的最佳技能結合起來,實現協作并推動“跨團隊的機器學習理念”。

如果具體情形難度相當,通常需要權衡生產時間和準確性以及提供組織范圍的機器學習策略,而且往往要橫跨包括公共、私有、數據庫、大數據生態系統、傳統數據存儲等在內的多個孤立的數據源進行。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1804

    文章

    48708

    瀏覽量

    246487
  • 機器學習
    +關注

    關注

    66

    文章

    8492

    瀏覽量

    134088

原文標題:三個核心要素幫你應對機器學習挑戰

文章出處:【微信號:gh_195c6bf0b140,微信公眾號:Micron美光科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    人工智能機器學習以及Edge AI的概念與應用

    人工智能相關各種技術的概念介紹,以及先進的Edge AI(邊緣人工智能)的最新發展與相關應用。 人工智能機器學習是現代科技的核心技術
    的頭像 發表于 01-25 17:37 ?819次閱讀
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>機器</b><b class='flag-5'>學習</b>以及Edge AI的概念與應用

    人工智能對數據中心基礎設施帶來了哪些挑戰

    (太瓦時),約占全球總用電量的 2%。在美國,擁有全球分之一的數據中心,耗電量為 260 TWh,占總用電量的 6%。 ? 預測未來具有挑戰性,這取決于部署了多少非常耗電的圖形處理單元(GPU)
    發表于 12-31 13:48 ?378次閱讀
    <b class='flag-5'>人工智能</b>對數據中心基礎設施<b class='flag-5'>帶來</b>了哪些<b class='flag-5'>挑戰</b>

    【「具身智能機器人系統」閱讀體驗】1.初步理解具身智能

    人工智能機器人技術和計算系統交叉領域感興趣的讀者來說不可或缺的書。這本書深入探討了具身智能這一結合物理機器人和智能算法的領域,該領域正在
    發表于 12-28 21:12

    【「具身智能機器人系統」閱讀體驗】+數據在具身人工智能中的價值

    嵌入式人工智能(EAI)將人工智能集成到機器人等物理實體中,使它們能夠感知、學習環境并與之動態交互。這種能力使此類機器人能夠在人類社會中有效
    發表于 12-24 00:33

    嵌入式和人工智能究竟是什么關系?

    嵌入式和人工智能究竟是什么關系? 嵌入式系統是一特殊的系統,它通常被嵌入到其他設備或機器中,以實現特定功能。嵌入式系統具有非常強的適應性和靈活性,能夠根據用戶需求進行定制化設計。它廣泛應用于各種
    發表于 11-14 16:39

    人工智能機器學習和深度學習存在什么區別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術,但其中一個很大的子集是機器學習——讓算法從數據中學習
    發表于 10-24 17:22 ?2766次閱讀
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區別

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    、優化等方面的應用有了更清晰的認識。特別是書中提到的基于大數據和機器學習的能源管理系統,通過實時監測和分析能源數據,實現了能源的高效利用和智能化管理。 其次,第6章通過多個案例展示了人工智能
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    很幸運社區給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅動科學創新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術在生命科學領域中的廣泛應用和深遠影響。在
    發表于 10-14 09:21

    《AI for Science:人工智能驅動科學創新》第二章AI for Science的技術支撐學習心得

    人工智能在科學研究中的核心技術,包括機器學習、深度學習、神經網絡等。這些技術構成了AI for Science的基石,使得AI能夠處理和分析復雜的數據集,從而發現隱藏在數據中的模式和規
    發表于 10-14 09:16

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    ,無疑為讀者鋪設了一條探索人工智能(AI)如何深刻影響并推動科學創新的道路。在閱讀這一章后,我深刻感受到了人工智能技術在科學領域的廣泛應用潛力以及其帶來的革命性變化,以下是我個人的學習
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V和Arm內核及其定制的機器學習和浮點運算單元,用于處理復雜的人工智能圖像處理任務。 四、未來發展趨勢 隨著人工智能技術的不斷發展和普及,RISC-V在
    發表于 09-28 11:00

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    、污染治理、碳減排個方面介紹了人工智能為環境科學引入的新價值和新機遇。 第8章探討了AI for Science在快速發展過程中面臨的機遇和挑戰,并對“平臺科研”模式進行了展望。 申請時間
    發表于 09-09 13:54

    FPGA在人工智能中的應用有哪些?

    FPGA(現場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發表于 07-29 17:05

    谷歌開發出高精度人工智能天氣模擬器

    谷歌最新研發的高精度人工智能天氣模擬器,正引領著氣象預測技術的新一輪革新。該項目的核心在于將標準的物理驅動模型與先進的機器學習工具巧妙結合,旨在克服單一依賴人工智能
    的頭像 發表于 07-27 16:20 ?2421次閱讀

    人工智能機器學習和深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning,
    的頭像 發表于 07-03 18:22 ?2537次閱讀