女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

零基礎如何入門人工智能?

lviY_AI_shequ ? 來源:未知 ? 作者:易水寒 ? 2017-12-22 15:24 ? 次閱讀

一、人工智能的發展現狀

1.1 概念

根據維基百科的解釋,人工智能是被機器展示的智力,與人類和其他動物的自然智能相反,在計算機科學中AI研究被定義為 “代理人軟件程序”:任何能夠感受周圍環境并且能最大化它成功機會的設備。

1.2 重大事件

  • 2016 年 3 月 ,AlphaGo 與當時世界排名第四、職業九段棋手李世石,進行圍棋人機大戰,以 4:1 總比分獲勝。

  • 2016 年 10 月 ,美國白宮發布了《為未來人工智能做好準備》和《美國國家人工智能研究與發展策略規劃》兩份重磅報告,詳細闡述了美國未來的人工智能發展規劃以及人工智能給政府工作帶來的挑戰與機遇。

VentureBeat 對這兩份報告進行了總結,得出了 7 個淺顯易懂的要點:

1. 人工智能應當被用于造福人類;

2. 政府應該擁抱人工智能;

3. 需要對自動汽車和無人機進行管制;

4. 要讓所有孩子都跟上技術的發展;

5. 使用人工智能補充而非取代人類工作者;

6. 消除數據中的偏見或不要使用有偏見的數據;

7. 考慮安全和全球影響。

  • 2016 年雙十一 ,魯班首次服務雙十一,制作了 1.7 億章商品展示廣告,提升商品點擊率 100%。如果全靠設計師人手來完成,假設每張圖需要耗時 20 分鐘,滿打滿算需要 100 個設計師連續做 300 年。

2017 年,魯班的設計水平顯著提升,目前已經學習百萬級的設計師創意內容,擁有演變出上億級的設計能力。此外,魯班已經實現一天制作 4000 萬張海報能力,沒有一張會完全一樣。

  • 2017 年 5 月 ,AlphaGo Master 戰勝世界冠軍柯潔。

  • 2017 年 10 月 18 日 ,DeepMind 團隊公布了最強版本 AlphaGo, 代號 AlphaGo Zero。

  • 2017 年 10 月 25 日 ,在沙特舉行的未來投資計劃大會上,沙特阿拉伯授予美國漢森機器人公司生產的 “女性” 機器人索菲亞公民身份。

作為世界上首個獲得公民身份的機器人,索菲亞當天說,“她” 希望用人工智能 “幫助人類過上更好的生活”,同時對支持 “AI 威脅論” 的馬斯克說 “人不犯我,我不犯人”!

會后,馬斯克在推特上說:“把電影《教父》輸入了人工智能系統,還能有什么比這個更糟的?” 教父是好萊塢經典電影,劇情充滿了背叛和謀殺。

索菲亞被授予公民身份后所產生的倫理問題也是人們不得不考慮的

近幾年人工智能領域的大新聞太多,這里不一一列舉

二、人工智能、深度學習、機器學習、增強學習之間的關系是怎樣的

如圖所示,人工智能是一個大類,包括專家系統、知識表示、機器學習等等,其中機器學習是目前最火也是發展最好的一個分支,機器學習中又包括監督學習、非監督學習、深度學習,增強學習等等。

監督學習,就是人們常說的分類,通過已有的訓練樣本(即已知數據以及其對應的輸出)去訓練得到一個最優模型(這個模型屬于某個函數的集合,最優則表示在某個評價準則下是最佳的)。

再利用這個模型將所有的輸入映射為相應的輸出,對輸出進行簡單的判斷從而實現分類的目的,也就具有了對未知數據進行分類的能力。

舉例來說,我們上幼兒園的時候經常做的一個活動叫看圖識字,如上圖所示,老師會給我們看很多圖片,下面配了文字,時間長了之后,我們大腦中會形成抽象的概念,兩個犄角,一條短尾巴,胖胖的(特征)…

這樣的動物是牛;圓的,黃的,發光的,掛在天上的 … 是太陽;人長這樣。等再看到類似的東西時我們便能認出來,即使跟以前看到的不完全一樣,但是符合在我們大腦中形成的概念,如下圖所示。

非監督學學習則是另一種研究的比較多的學習方法,它與監督學習的不同之處,在于我們事先沒有任何訓練樣本,而需要直接對數據進行建模。

舉個例子,如圖所示,在沒有任何提示(無訓練集)的情況下,需要把下列六個圖形分成兩類,你會怎么分呢,當然是第一排一類,第二排一類,因為第一排形狀更接近,第二排形狀更接近。

非監督學習就是在實現不知道數據集分類的情況下在數據中尋找特征。

深度學習是基于機器學習延伸出來的一個新的領域,由以人大腦結構為啟發的神經網絡算法為起源加之模型結構深度的增加發展,并伴隨大數據和計算能力的提高而產生的一系列新的算法。

零基礎如何入門人工智能?

深度學習概念由著名科學家 Geoffrey Hinton 等人在 2006 年和 2007 年在《Sciences》等上發表的文章被提出和興起。

深度學習,作為機器學習中延伸出來的一個領域,被應用在圖像處理與計算機視覺,自然語言處理以及語音識別等領域。

自 2006 年至今,學術界和工業界合作在深度學習方面的研究與應用在以上領域取得了突破性的進展。以 ImageNet 為數據庫的經典圖像中的物體識別競賽為例,擊敗了所有傳統算法,取得了前所未有的精確度。

增強學習也是機器學習一個重要的分支,是通過觀察來學習做成如何的動作。每個動作都會對環境有所影響,學習對象根據觀察到的周圍環境的反饋來做出判斷。

三、數學基礎有多重要

對于數學基礎知識,需要高中數學知識加上高數、線性代數、統計學、概率論,即使掌握的不是很完善,但是至少要知道概念,在用到的時候知道去哪查。

如果基礎不好,可以先看看吳軍的《數學之美》,講的比較通俗易懂。也可以邊做邊學,實踐是檢驗真理的唯一標準,畢竟大多數人還是以工程實踐為主,如果你想做研究理論的科學家,并不適合看本文。

四、入門級機器學習算法

4.1 決策樹

判定樹是一個類似于流程圖的樹結構:其中,每個內部結點表示在一個屬性上的測試,每個分支代表一個屬性輸出,而每個樹葉結點代表類或類分布。樹的最頂層是根結點。

零基礎如何入門人工智能?

例:現有一個數據集,表示一些的人的年齡、收入、是否是學生、信用、是否會買電腦。年齡有年輕,中年,老年三種;收入有高中低;信用有一般和很好。數據及保存在 AllElectronics.csv 中。

4.2 最臨近取樣

最臨近取樣就是把已有數據分成幾類,對新輸入的數據計算與已知數據的距離,距離哪一個近,就把新數據分到哪一類,例如下圖所示的電影分類,對于最后一行未知電影類型的電影,根據打斗次數和接吻次數,距離浪漫型更近,應該被歸類為浪漫型電影。

零基礎如何入門人工智能?

4.3 支持向量機

支持向量機(SVM)是從線性可分情況下的最優分類面發展而來。最優分類面就是要求分類線不但能將兩類正確分開 (訓練錯誤率為 0), 且使分類間隔最大。

SVM 考慮尋找一個滿足分類要求的超平面 , 并且使訓練集中的點距離分類面盡可能的遠 , 也就是尋找一個分類面使它兩側的空白區域 (margin) 最大。

這兩類樣本中離分類面最近的點且平行于最優分類面的超平面上 H1,H2 的訓練樣本就叫做支持向量。

零基礎如何入門人工智能?

例:使用 sklearn 庫實現 svm 算法, 俗稱調庫,實際上調庫是一個很簡單的過程,初級階段甚至都不需要知道原理。

  1. #coding:utf-8

  2. fromsklearnimportsvm

  3. X=[[2,0],[1,1],[2,3]]

  4. y=[0,0,1]

  5. clf=svm.SVC(kernel='linear')

  6. clf.fit(X,y) #?通過.fit函數已經可以算出支持向量機的所有參數并保存在clf中

  7. printclf

  8. #getsupportvectors

  9. printclf.support_vectors_

  10. #getindexofsupportvectors

  11. printclf.support_

  12. #getnumberofsupportvectorsforeachclass

  13. printclf.n_support_

  14. #predictdata,參數是二維數組

  15. printclf.predict([[2,0],[10,10]])


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1804

    文章

    48737

    瀏覽量

    246678

原文標題:編程和數學基礎不佳如何入門人工智能?

文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    【「零基礎開發AI Agent」閱讀體驗】+ 入門篇學習

    很高興又有機會學習ai技術,這次試讀的是「零基礎開發AI Agent」,作者葉濤、管鍇、張心雨。 大模型的普及是近三年來的一件大事,萬物皆可大模型已成為趨勢。作為大模型開發應用中重要組成部分,提示詞
    發表于 05-02 09:26

    云知聲積極推動廈門人工智能產業發展

    近日,廈門市市長伍斌在市政府會見了云知聲創始人、CEO黃偉一行。雙方就深化合作、共促廈門人工智能產業發展進行交流。
    的頭像 發表于 04-22 16:19 ?216次閱讀

    Vivado Tcl零基入門與案例實戰【高亞軍編著】

    Vivado Tcl零基入門與案例實戰-高亞軍編寫
    發表于 01-14 11:13

    零基入門PCB工程師

    各位前輩大家好,零基入門PCB工程師,有什么學習資料推薦嗎?
    發表于 11-27 16:54

    嵌入式和人工智能究竟是什么關系?

    嵌入式和人工智能究竟是什么關系? 嵌入式系統是一種特殊的系統,它通常被嵌入到其他設備或機器中,以實現特定功能。嵌入式系統具有非常強的適應性和靈活性,能夠根據用戶需求進行定制化設計。它廣泛應用于各種
    發表于 11-14 16:39

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅動科學創新》的第6章后,我深刻感受到人工智能在能源科學領域中的巨大潛力和廣泛應用。這一章詳細
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    很幸運社區給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅動科學創新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術在生命科學領域中的廣泛應用和深遠影響。在
    發表于 10-14 09:21

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    周末收到一本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內容詳實,干活滿滿。 《AI for Science:人工智能驅動科學創新》這本書的第一章,作為整個著作的開篇
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領域的應用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發表于 09-28 11:00

    人工智能ai 數電 模電 模擬集成電路原理 電路分析

    人工智能ai 數電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學 不過好像都是要學的
    發表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結經驗,擬按照要求準備相關體會材料。看能否有助于入門和提高ss
    發表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    ! 《AI for Science:人工智能驅動科學創新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學家做了什么? 人工智能將如何改變我們所生
    發表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產業博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產品
    發表于 08-22 15:00

    20.2-電磁桿在磁軌道的測試 零基入門智能車競賽 STM32電磁小車

    20.2-電磁桿在磁軌道的測試 零基入門智能車競賽 智能車競賽 電磁桿原理圖 電磁循跡小車 智能車電磁組 STM32電磁小車 電磁循跡小車
    的頭像 發表于 08-20 10:52 ?1039次閱讀
    20.2-電磁桿在磁軌道的測試 <b class='flag-5'>零基</b>礎<b class='flag-5'>入門</b><b class='flag-5'>智能</b>車競賽 STM32電磁小車

    FPGA在人工智能中的應用有哪些?

    FPGA(現場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發表于 07-29 17:05