女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

日本團隊發(fā)布在富岳超算上訓(xùn)練的Fugaku-LLM大模型

微云疏影 ? 來源:綜合整理 ? 作者:綜合整理 ? 2024-05-11 10:05 ? 次閱讀

5月11日訊,多方企業(yè)與機構(gòu)聯(lián)手的日本研究小組昨日公布了Fugaku-LLM大型模型。該模型最大特點在于在Arm架構(gòu)超算“富岳”上完成了訓(xùn)練。

自2023年5月起,F(xiàn)ugaku-LLM模型的開發(fā)工作開始展開,最初參與團隊包括富士通、東京工業(yè)大學(xué)、日本東北大學(xué)以及日本理化學(xué)研究所(簡稱理研)。

至同年8月,又有三家合作伙伴——名古屋大學(xué)、CyberAgent(同時也是游戲巨頭Cygames的母公司)及HPC-AI領(lǐng)域創(chuàng)新企業(yè)Kotoba Technologies加入項目。

研究團隊在昨日的新聞發(fā)布會上表示,他們成功利用富岳超算的強大性能,使矩陣乘法運算速度提升6倍,通信速度提高3倍,從而證明大型純CPU超算同樣適用于大模型訓(xùn)練。

Fugaku-LLM模型參數(shù)規(guī)模達(dá)13B,成為日本國內(nèi)最大的大型語言模型。

該模型采用13824個富岳超算節(jié)點,在3800億個Token上進行訓(xùn)練,其中60%為日語數(shù)據(jù),其余40%涵蓋英語、數(shù)學(xué)、代碼等內(nèi)容。

研究團隊表示,F(xiàn)ugaku-LLM模型能夠在交流過程中自然運用日語敬語等特殊表達(dá)方式。

在測試結(jié)果方面,該模型在日語MT-Bench模型基準(zhǔn)測試中的平均得分高達(dá)5.5,位列基于日本語料資源的開放模型之首;在人文社科類別的測試中更獲得了9.18的高分。

現(xiàn)如今,F(xiàn)ugaku-LLM模型已在GitHub和Hugging Face平臺公開發(fā)布,外部研究人員和工程師可在遵循許可協(xié)議的基礎(chǔ)上,將該模型應(yīng)用于學(xué)術(shù)和商業(yè)領(lǐng)域。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    11040

    瀏覽量

    216047
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3488

    瀏覽量

    50021
  • 語言模型
    +關(guān)注

    關(guān)注

    0

    文章

    558

    瀏覽量

    10682
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3033

    瀏覽量

    3839
收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    無法OVMS上運行來自Meta的大型語言模型LLM),為什么?

    無法 OVMS 上運行來自 Meta 的大型語言模型LLM),例如 LLaMa2。 從 OVMS GitHub* 存儲庫運行 llama_chat Python* Demo 時遇到錯誤。
    發(fā)表于 03-05 08:07

    小白學(xué)大模型:構(gòu)建LLM的關(guān)鍵步驟

    隨著大規(guī)模語言模型LLM性能、成本和應(yīng)用前景上的快速發(fā)展,越來越多的團隊開始探索如何自主訓(xùn)練LLM
    的頭像 發(fā)表于 01-09 12:12 ?842次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:構(gòu)建<b class='flag-5'>LLM</b>的關(guān)鍵步驟

    GPU是如何訓(xùn)練AI大模型

    AI模型訓(xùn)練過程中,大量的計算工作集中矩陣乘法、向量加法和激活函數(shù)等運算上。這些運算正是GPU所擅長的。接下來,AI部落小編帶您了解G
    的頭像 發(fā)表于 12-19 17:54 ?648次閱讀

    什么是大模型、大模型是怎么訓(xùn)練出來的及大模型作用

    ,基礎(chǔ)模型。 ? 大模型是一個簡稱,完整的叫法,應(yīng)該是“人工智能預(yù)訓(xùn)練模型”。預(yù)訓(xùn)練,是一項技術(shù),我們后面再解釋。 ? 我們現(xiàn)在口頭上常說
    的頭像 發(fā)表于 11-25 09:29 ?1.3w次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓(xùn)練</b>出來的及大<b class='flag-5'>模型</b>作用

    什么是LLM?LLM自然語言處理中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,自然語言處理(NLP)領(lǐng)域迎來了革命性的進步。其中,大型語言模型LLM)的出現(xiàn),標(biāo)志著我們對語言理解能力的一次飛躍。LLM通過深度學(xué)習(xí)和海量數(shù)據(jù)訓(xùn)練,使得
    的頭像 發(fā)表于 11-19 15:32 ?3378次閱讀

    如何訓(xùn)練自己的LLM模型

    訓(xùn)練自己的大型語言模型LLM)是一個復(fù)雜且資源密集的過程,涉及到大量的數(shù)據(jù)、計算資源和專業(yè)知識。以下是訓(xùn)練LLM
    的頭像 發(fā)表于 11-08 09:30 ?1399次閱讀

    LLM和傳統(tǒng)機器學(xué)習(xí)的區(qū)別

    訓(xùn)練方法 LLM: 預(yù)訓(xùn)練和微調(diào): LLM通常采用預(yù)訓(xùn)練(Pre-training)和微調(diào)(Fine-tuning)的方法。預(yù)
    的頭像 發(fā)表于 11-08 09:25 ?1721次閱讀

    端到端InfiniBand網(wǎng)絡(luò)解決LLM訓(xùn)練瓶頸

    的,這需要大量的計算資源和高速數(shù)據(jù)傳輸網(wǎng)絡(luò)。端到端InfiniBand(IB)網(wǎng)絡(luò)作為高性能計算和AI模型訓(xùn)練的理想選擇,發(fā)揮著重要作用。本文中,我們將深入探討大型語言模型
    的頭像 發(fā)表于 10-23 11:26 ?1131次閱讀
    端到端InfiniBand網(wǎng)絡(luò)解決<b class='flag-5'>LLM</b><b class='flag-5'>訓(xùn)練</b>瓶頸

    大語言模型的預(yù)訓(xùn)練

    能力,逐漸成為NLP領(lǐng)域的研究熱點。大語言模型的預(yù)訓(xùn)練是這一技術(shù)發(fā)展的關(guān)鍵步驟,它通過海量無標(biāo)簽數(shù)據(jù)上進行訓(xùn)練,使模型學(xué)習(xí)到語言的通用知識
    的頭像 發(fā)表于 07-11 10:11 ?899次閱讀

    LLM預(yù)訓(xùn)練的基本概念、基本原理和主要優(yōu)勢

    人工智能和自然語言處理(NLP)領(lǐng)域,大型語言模型(Large Language Model,簡稱LLM)的興起極大地推動了技術(shù)的進步和應(yīng)用的發(fā)展。LLM通過
    的頭像 發(fā)表于 07-10 11:03 ?2787次閱讀

    llm模型訓(xùn)練一般用什么系統(tǒng)

    LLM(Large Language Model,大型語言模型)是近年來自然語言處理領(lǐng)域取得顯著成果的一種深度學(xué)習(xí)模型。它通常需要大量的計算資源和數(shù)據(jù)來進行
    的頭像 發(fā)表于 07-09 10:02 ?758次閱讀

    llm模型有哪些格式

    LLM(Large Language Model,大型語言模型)是一種深度學(xué)習(xí)模型,主要用于處理自然語言處理(NLP)任務(wù)。LLM模型的格式
    的頭像 發(fā)表于 07-09 09:59 ?1303次閱讀

    LLM模型和LMM模型的區(qū)別

    在重復(fù)測量或分層數(shù)據(jù)中。 LMM(線性混合效應(yīng)模型)是一種特殊類型的線性混合模型,它包括固定效應(yīng)和隨機效應(yīng)。它通常用于分析具有多個層次的數(shù)據(jù)結(jié)構(gòu),例如在多層次或分組數(shù)據(jù)中。 固定效應(yīng)與隨機效應(yīng):
    的頭像 發(fā)表于 07-09 09:57 ?2339次閱讀

    llm模型和chatGPT的區(qū)別

    LLM(Large Language Model)是指大型語言模型,它們是一類使用深度學(xué)習(xí)技術(shù)構(gòu)建的自然語言處理(NLP)模型LLM模型
    的頭像 發(fā)表于 07-09 09:55 ?1895次閱讀

    LLM模型的應(yīng)用領(lǐng)域

    本文中,我們將深入探討LLM(Large Language Model,大型語言模型)的應(yīng)用領(lǐng)域。LLM是一種基于深度學(xué)習(xí)的人工智能技術(shù),它能夠理解和生成自然語言文本。近年來,隨著計
    的頭像 發(fā)表于 07-09 09:52 ?1184次閱讀