女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用OpenVINO?在英特爾13th Gen CPU上運(yùn)行SDXL-Turbo文本圖像生成模型

英特爾物聯(lián)網(wǎng) ? 來(lái)源:英特爾物聯(lián)網(wǎng) ? 2024-01-18 17:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文基于第 13 代英特爾 酷睿 i5-13490F 型號(hào)CPU 驗(yàn)證,對(duì)于量化后模型,你只需要在16G 的筆記本電腦上就可體驗(yàn)生成過(guò)程(最佳體驗(yàn)為 32G 內(nèi)存)。

SDXL-Turbo 是一個(gè)快速的生成式文本到圖像模型,可以通過(guò)單次網(wǎng)絡(luò)評(píng)估從文本提示中合成逼真的圖像。SDXL-Turbo 采用了一種稱為 Adversarial Diffusion Distillation (ADD) 的新型訓(xùn)練方法(詳見(jiàn)技術(shù)報(bào)告),該方法可以在 1 到 4 個(gè)步驟中對(duì)大規(guī)模基礎(chǔ)圖像擴(kuò)散模型進(jìn)行采樣,并保持高質(zhì)量的圖像。通過(guò)最新版本(2023.2)OpenVINO工具套件的強(qiáng)大推理能力及NNCF 的高效神經(jīng)網(wǎng)絡(luò)壓縮能力,我們能夠在兩秒內(nèi)實(shí)現(xiàn)SDXL-Turbo 圖像的高速、高質(zhì)量生成。

01

環(huán)境安裝

在開(kāi)始之前,我們需要安裝所有環(huán)境依賴:

%pip install --extra-index-url https://download.pytorch.org/whl/cpu 
torch transformers diffusers nncf optimum-intel gradio openvino==2023.2.0 onnx 
"git+https://github.com/huggingface/optimum-intel.git"

02

下載、轉(zhuǎn)換模型

首先我們要把huggingface 下載的原始模型轉(zhuǎn)化為OpenVINO IR,以便后續(xù)的NNCF 工具鏈進(jìn)行量化工作。轉(zhuǎn)換完成后你將得到對(duì)應(yīng)的text_encode、unet、vae 模型。

from pathlib import Path


model_dir = Path("./sdxl_vino_model")
sdxl_model_id = "stabilityai/sdxl-turbo"
skip_convert_model = model_dir.exists()

import os
if not skip_convert_model:
  # 設(shè)置下載路徑到當(dāng)前文件夾,并加速下載
  os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
  os.system(f'optimum-cli export openvino --model {sdxl_model_id} --task stable-diffusion-xl {model_dir} --fp16')
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
tae_id = "madebyollin/taesdxl"
save_path = './taesdxl'
os.system(f'huggingface-cli download --resume-download {tae_id} --local-dir {save_path}')

import torch
import openvino as ov
from diffusers import AutoencoderTiny
import gc


class VAEEncoder(torch.nn.Module):
  def __init__(self, vae):
    super().__init__()
    self.vae = vae


  def forward(self, sample):
    return self.vae.encode(sample)
  
class VAEDecoder(torch.nn.Module):
  def __init__(self, vae):
    super().__init__()
    self.vae = vae


  def forward(self, latent_sample):
    return self.vae.decode(latent_sample)


def convert_tiny_vae(save_path, output_path):
  tiny_vae = AutoencoderTiny.from_pretrained(save_path)
  tiny_vae.eval()
  vae_encoder = VAEEncoder(tiny_vae)
  ov_model = ov.convert_model(vae_encoder, example_input=torch.zeros((1,3,512,512)))
  ov.save_model(ov_model, output_path / "vae_encoder/openvino_model.xml")
  tiny_vae.save_config(output_path / "vae_encoder")
  vae_decoder = VAEDecoder(tiny_vae)
  ov_model = ov.convert_model(vae_decoder, example_input=torch.zeros((1,4,64,64)))
  ov.save_model(ov_model, output_path / "vae_decoder/openvino_model.xml")
  tiny_vae.save_config(output_path / "vae_decoder")  


convert_tiny_vae(save_path, model_dir)

03

從文本到圖像生成

現(xiàn)在,我們就可以進(jìn)行文本到圖像的生成了,我們使用優(yōu)化后的openvino pipeline 加載轉(zhuǎn)換后的模型文件并推理;只需要指定一個(gè)文本輸入,就可以生成我們想要的圖像結(jié)果。

from optimum.intel.openvino import OVStableDiffusionXLPipeline
device='AUTO' # 這里直接指定AUTO,可以寫(xiě)成CPU
model_dir = "./sdxl_vino_model"
text2image_pipe = OVStableDiffusionXLPipeline.from_pretrained(model_dir, device=device)

import numpy as np
prompt = "cute cat"
image = text2image_pipe(prompt, num_inference_steps=1, height=512, width=512, guidance_scale=0.0, generator=np.random.RandomState(987)).images[0]
image.save("cat.png")
image

# 清除資源占用
import gc
del text2image_pipe
gc.collect()

04

從圖片到圖片生成

我們還可以實(shí)現(xiàn)從圖片到圖片的擴(kuò)散模型生成,將剛才產(chǎn)出的文生圖圖片進(jìn)行二次圖像生成即可。

from optimum.intel import OVStableDiffusionXLImg2ImgPipeline
model_dir = "./sdxl_vino_model"
device='AUTO' # 'CPU'
image2image_pipe = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(model_dir, device=device)

  Compiling the vae_decoder to AUTO ...
  Compiling the unet to AUTO ...
  Compiling the vae_encoder to AUTO ...
  Compiling the text_encoder_2 to AUTO ...
  Compiling the text_encoder to AUTO ...

photo_prompt = "a cute cat with bow tie"
photo_image = image2image_pipe(photo_prompt, image=image, num_inference_steps=2, generator=np.random.RandomState(511), guidance_scale=0.0, strength=0.5).images[0]
photo_image.save("cat_tie.png")
photo_image

05

量化

NNCF(Neural Network Compression Framework) 是一款神經(jīng)網(wǎng)絡(luò)壓縮框架,通過(guò)對(duì) OpenVINO IR 格式模型的壓縮與量化以便更好的提升模型在英特爾設(shè)備上部署的推理性能。

[NNCF]:

https://github.com/openvinotoolkit/nncf/

[NNCF] 通過(guò)在模型圖中添加量化層,并使用訓(xùn)練數(shù)據(jù)集的子集來(lái)微調(diào)這些額外的量化層的參數(shù),實(shí)現(xiàn)了后訓(xùn)練量化。量化后的權(quán)重結(jié)果將是INT8 而不是FP32/FP16,從而加快了模型的推理速度。

根據(jù)SDXL-Turbo Model 的結(jié)構(gòu),UNet 模型占據(jù)了整個(gè)流水線執(zhí)行時(shí)間的重要部分。現(xiàn)在我們將展示如何使用[NNCF] 對(duì)UNet 部分進(jìn)行優(yōu)化,以減少計(jì)算成本并加快流水線速度。至于其余部分不需要量化,因?yàn)椴⒉荒茱@著提高推理性能,但可能會(huì)導(dǎo)致準(zhǔn)確性的大幅降低。

量化過(guò)程包含以下步驟:

- 為量化創(chuàng)建一個(gè)校準(zhǔn)數(shù)據(jù)集。

- 運(yùn)行nncf.quantize() 來(lái)獲取量化模型。

- 使用openvino.save_model() 函數(shù)保存INT8 模型。

注:由于量化需要一定的硬件資源(64G 以上的內(nèi)存),之后我直接附上了量化后的模型,你可以直接下載使用。

from pathlib import Path
import openvino as ov
from optimum.intel.openvino import OVStableDiffusionXLPipeline
import os


core = ov.Core()
model_dir = Path("./sdxl_vino_model")
UNET_INT8_OV_PATH = model_dir / "optimized_unet" / "openvino_model.xml"


import datasets
import numpy as np
from tqdm import tqdm
from transformers import set_seed
from typing import Any, Dict, List


set_seed(1)


class CompiledModelDecorator(ov.CompiledModel):
  def __init__(self, compiled_model: ov.CompiledModel, data_cache: List[Any] = None):
    super().__init__(compiled_model)
    self.data_cache = data_cache if data_cache else []


  def __call__(self, *args, **kwargs):
    self.data_cache.append(*args)
    return super().__call__(*args, **kwargs)


def collect_calibration_data(pipe, subset_size: int) -> List[Dict]:
  original_unet = pipe.unet.request
  pipe.unet.request = CompiledModelDecorator(original_unet)
  dataset = datasets.load_dataset("conceptual_captions", split="train").shuffle(seed=42)


  # Run inference for data collection
  pbar = tqdm(total=subset_size)
  diff = 0
  for batch in dataset:
    prompt = batch["caption"]
    if len(prompt) > pipe.tokenizer.model_max_length:
      continue
    _ = pipe(
      prompt,
      num_inference_steps=1,
      height=512,
      width=512,
      guidance_scale=0.0,
      generator=np.random.RandomState(987)
    )
    collected_subset_size = len(pipe.unet.request.data_cache)
    if collected_subset_size >= subset_size:
      pbar.update(subset_size - pbar.n)
      break
    pbar.update(collected_subset_size - diff)
    diff = collected_subset_size


  calibration_dataset = pipe.unet.request.data_cache
  pipe.unet.request = original_unet
  return calibration_dataset

if not UNET_INT8_OV_PATH.exists():
  text2image_pipe = OVStableDiffusionXLPipeline.from_pretrained(model_dir)
  unet_calibration_data = collect_calibration_data(text2image_pipe, subset_size=200)

import nncf
from nncf.scopes import IgnoredScope


UNET_OV_PATH = model_dir / "unet" / "openvino_model.xml"
if not UNET_INT8_OV_PATH.exists():
  unet = core.read_model(UNET_OV_PATH)
  quantized_unet = nncf.quantize(
    model=unet,
    model_type=nncf.ModelType.TRANSFORMER,
    calibration_dataset=nncf.Dataset(unet_calibration_data),
    ignored_scope=IgnoredScope(
      names=[
        "__module.model.conv_in/aten::_convolution/Convolution",
        "__module.model.up_blocks.2.resnets.2.conv_shortcut/aten::_convolution/Convolution",
        "__module.model.conv_out/aten::_convolution/Convolution"
      ],
    ),
  )
  ov.save_model(quantized_unet, UNET_INT8_OV_PATH)

06

運(yùn)行量化后模型

由于量化unet 的過(guò)程需要的內(nèi)存可能比較大,且耗時(shí)較長(zhǎng),我提前導(dǎo)出了量化后unet 模型,此處給出下載地址:

鏈接: https://pan.baidu.com/s/1WMAsgFFkKKp-EAS6M1wK1g

提取碼: psta

下載后解壓到目標(biāo)文件夾`sdxl_vino_model` 即可運(yùn)行量化后的int8 unet 模型。

從文本到圖像生成

from pathlib import Path
import openvino as ov
from optimum.intel.openvino import OVStableDiffusionXLPipeline
import numpy as np


core = ov.Core()
model_dir = Path("./sdxl_vino_model")
UNET_INT8_OV_PATH = model_dir / "optimized_unet" / "openvino_model.xml"
int8_text2image_pipe = OVStableDiffusionXLPipeline.from_pretrained(model_dir, compile=False)
int8_text2image_pipe.unet.model = core.read_model(UNET_INT8_OV_PATH)
int8_text2image_pipe.unet.request = None


prompt = "cute cat"
image = int8_text2image_pipe(prompt, num_inference_steps=1, height=512, width=512, guidance_scale=0.0, generator=np.random.RandomState(987)).images[0]
display(image)

 Compiling the text_encoder to CPU ...
  Compiling the text_encoder_2 to CPU ...




   0%|     | 0/1 [00:00

import gc
del int8_text2image_pipe
gc.collect()

從圖片到圖片生成

from optimum.intel import OVStableDiffusionXLImg2ImgPipeline
int8_image2image_pipe = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(model_dir, compile=False)
int8_image2image_pipe.unet.model = core.read_model(UNET_INT8_OV_PATH)
int8_image2image_pipe.unet.request = None


photo_prompt = "a cute cat with bow tie"
photo_image = int8_image2image_pipe(photo_prompt, image=image, num_inference_steps=2, generator=np.random.RandomState(511), guidance_scale=0.0, strength=0.5).images[0]
display(photo_image)

  Compiling the text_encoder to CPU ...
  Compiling the text_encoder_2 to CPU ...
  Compiling the vae_encoder to CPU ...




   0%|     | 0/1 [00:00

我們可以對(duì)比量化后的unet 模型大小減少,可以看到量化對(duì)模型大小的壓縮是非常顯著的

from pathlib import Path


model_dir = Path("./sdxl_vino_model")
UNET_OV_PATH = model_dir / "unet" / "openvino_model.xml"
UNET_INT8_OV_PATH = model_dir / "optimized_unet" / "openvino_model.xml"


fp16_ir_model_size = UNET_OV_PATH.with_suffix(".bin").stat().st_size / 1024
quantized_model_size = UNET_INT8_OV_PATH.with_suffix(".bin").stat().st_size / 1024


print(f"FP16 model size: {fp16_ir_model_size:.2f} KB")
print(f"INT8 model size: {quantized_model_size:.2f} KB")
print(f"Model compression rate: {fp16_ir_model_size / quantized_model_size:.3f}")  

  FP16 model size: 5014578.27 KB
  INT8 model size: 2513501.39 KB
  Model compression rate: 1.995

運(yùn)行下列代碼可以對(duì)量化前后模型推理速度進(jìn)行簡(jiǎn)單比較,我們可以發(fā)現(xiàn)速度幾乎加速了一倍,NNCF 使我們?cè)?CPU 上生成一張圖的時(shí)間縮短到兩秒之內(nèi):

FP16 pipeline latency: 3.148
INT8 pipeline latency: 1.558
Text-to-Image generation speed up: 2.020

import time
def calculate_inference_time(pipe):
  inference_time = []
  for prompt in ['cat']*10:
    start = time.perf_counter()
    _ = pipe(
      prompt,
      num_inference_steps=1,
      guidance_scale=0.0,
      generator=np.random.RandomState(23)
    ).images[0]
    end = time.perf_counter()
    delta = end - start
    inference_time.append(delta)
  return np.median(inference_time)

int8_latency = calculate_inference_time(int8_text2image_pipe)
text2image_pipe = OVStableDiffusionXLPipeline.from_pretrained(model_dir)
fp_latency = calculate_inference_time(text2image_pipe)
print(f"FP16 pipeline latency: {fp_latency:.3f}")
print(f"INT8 pipeline latency: {int8_latency:.3f}")
print(f"Text-to-Image generation speed up: {fp_latency / int8_latency:.3f}")

07

可交互前端demo

最后,為了方便推理使用,這里附上了gradio 前端運(yùn)行demo,你可以利用他輕松生成你想要生成的圖像,并嘗試不同組合。

import gradio as gr
from pathlib import Path
import openvino as ov
import numpy as np


core = ov.Core()
model_dir = Path("./sdxl_vino_model")


# 如果你只有量化前模型,請(qǐng)使用這個(gè)地址并注釋 optimized_unet 地址:
# UNET_PATH = model_dir / "unet" / "openvino_model.xml"
UNET_PATH = model_dir / "optimized_unet" / "openvino_model.xml"


from optimum.intel.openvino import OVStableDiffusionXLPipeline
text2image_pipe = OVStableDiffusionXLPipeline.from_pretrained(model_dir)
text2image_pipe.unet.model = core.read_model(UNET_PATH)
text2image_pipe.unet.request = core.compile_model(text2image_pipe.unet.model)


def generate_from_text(text, seed, num_steps, height, width):
  result = text2image_pipe(text, num_inference_steps=num_steps, guidance_scale=0.0, generator=np.random.RandomState(seed), height=height, width=width).images[0]
  return result


with gr.Blocks() as demo:
  with gr.Column():
    positive_input = gr.Textbox(label="Text prompt")
    with gr.Row():
      seed_input = gr.Number(precision=0, label="Seed", value=42, minimum=0)
      steps_input = gr.Slider(label="Steps", value=1, minimum=1, maximum=4, step=1)
      height_input = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=32)
      width_input = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=32)
      btn = gr.Button()
    out = gr.Image(label="Result (Quantized)" , type="pil", width=512)
    btn.click(generate_from_text, [positive_input, seed_input, steps_input, height_input, width_input], out)
    gr.Examples([
      ["cute cat", 999], 
      ["underwater world coral reef, colorful jellyfish, 35mm, cinematic lighting, shallow depth of field, ultra quality, masterpiece, realistic", 89],
      ["a photo realistic happy white poodle dog playing in the grass, extremely detailed, high res, 8k, masterpiece, dynamic angle", 1569],
      ["Astronaut on Mars watching sunset, best quality, cinematic effects,", 65245],
      ["Black and white street photography of a rainy night in New York, reflections on wet pavement", 48199]
    ], [positive_input, seed_input])


try:
  demo.launch(debug=True)
except Exception:
  demo.launch(share=True, debug=True)

08

總結(jié)

利用最新版本的OpenVINO優(yōu)化,我們可以很容易實(shí)現(xiàn)在家用設(shè)備上高效推理圖像生成AI 的能力,加速生成式AI 在世紀(jì)場(chǎng)景下的落地應(yīng)用;歡迎您與我們一同體驗(yàn)OpenVINO與NNCF 在生成式AI 場(chǎng)景上的強(qiáng)大威力。






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    10196

    瀏覽量

    174673
  • OpenVINO
    +關(guān)注

    關(guān)注

    0

    文章

    115

    瀏覽量

    483

原文標(biāo)題:用 OpenVINO? 在英特爾 13th Gen CPU 上運(yùn)行 SDXL-Turbo 文本圖像生成模型 | 開(kāi)發(fā)者實(shí)戰(zhàn)

文章出處:【微信號(hào):英特爾物聯(lián)網(wǎng),微信公眾號(hào):英特爾物聯(lián)網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    使用英特爾? NPU 插件C++運(yùn)行應(yīng)用程序時(shí)出現(xiàn)錯(cuò)誤:“std::Runtime_error at memory location”怎么解決?

    使用OpenVINO?工具套件版本 2024.4.0 構(gòu)建C++應(yīng)用程序 使用英特爾? NPU 插件運(yùn)行了 C++ 應(yīng)用程序 遇到的錯(cuò)誤: Microsoft C++ exception: std::runtime_err
    發(fā)表于 06-25 08:01

    無(wú)法使用OpenVINO? GPU 設(shè)備運(yùn)行穩(wěn)定擴(kuò)散文本圖像的原因?

    OpenVINO? GPU 設(shè)備使用圖像大小 (1024X576) 運(yùn)行穩(wěn)定擴(kuò)散文本
    發(fā)表于 06-25 06:36

    使用Openvino? GenAI運(yùn)行Sdxl Turbo模型時(shí)遇到錯(cuò)誤怎么解決?

    使用 OpenVINO? GenAI 運(yùn)行 SDXL Turbo 模型。 遇到的錯(cuò)誤: RuntimeError :- Check ov_t
    發(fā)表于 06-24 06:38

    無(wú)法將Openvino? 2025.0與onnx運(yùn)行時(shí)Openvino? 執(zhí)行提供程序 1.16.2 結(jié)合使用,怎么處理?

    使用OpenVINO?與英特爾 i5-8500 CPU 和超核處理器 630 iGPU 一起部署模型。 使用了 Microsoft.ML.OnnxRuntime.
    發(fā)表于 06-24 06:31

    英特爾酷睿Ultra AI PC上部署多種圖像生成模型

    全新英特爾酷睿Ultra 200V系列處理器對(duì)比上代Meteor Lake,升級(jí)了模塊化結(jié)構(gòu)、封裝工藝,采用全新性能核與能效核、英特爾硬件線程調(diào)度器、Xe2微架構(gòu)銳炫GPU、第四代NPU等,由此也帶來(lái)了CPU性能提升18%,GP
    的頭像 發(fā)表于 04-02 15:47 ?509次閱讀
    <b class='flag-5'>在</b><b class='flag-5'>英特爾</b>酷睿Ultra AI PC上部署多種<b class='flag-5'>圖像</b><b class='flag-5'>生成</b><b class='flag-5'>模型</b>

    為什么無(wú)法檢測(cè)到OpenVINO?工具套件中的英特爾?集成圖形處理單元?

    Ubuntu* Desktop 22.04 安裝了 英特爾? Graphics Driver 版本并OpenVINO? 2023.1。 運(yùn)行
    發(fā)表于 03-05 08:36

    請(qǐng)問(wèn)OpenVINO?工具套件英特爾?Distribution是否與Windows? 10物聯(lián)網(wǎng)企業(yè)版兼容?

    無(wú)法基于 Windows? 10 物聯(lián)網(wǎng)企業(yè)版的目標(biāo)系統(tǒng)使用 英特爾? Distribution OpenVINO? 2021* 版本推斷模型
    發(fā)表于 03-05 08:32

    安裝OpenVINO?適用于Raspberry Pi64位操作系統(tǒng)的工具套件2022.3.1,配置英特爾?NCS2時(shí)出錯(cuò)怎么解決?

    安裝OpenVINO?適用于 Raspberry Pi* 64 位操作系統(tǒng)的工具套件 2022.3.1。 配置英特爾? NCS2時(shí)出錯(cuò): CMake Error at CMakeLists.txt
    發(fā)表于 03-05 07:27

    英特爾?獨(dú)立顯卡與OpenVINO?工具套件結(jié)合使用時(shí),無(wú)法運(yùn)行推理怎么解決?

    使用英特爾?獨(dú)立顯卡與OpenVINO?工具套件時(shí)無(wú)法運(yùn)行推理
    發(fā)表于 03-05 06:56

    為什么Ubuntu20.04使用YOLOv3比Yocto操作系統(tǒng)的推理快?

    使用 2021.4 OpenVINO?中的 GPU 插件運(yùn)行帶有 YOLOv3 模型的 對(duì)象檢測(cè) C++ 演示 。 使用 英特爾? 酷睿? i5-1145G7E、
    發(fā)表于 03-05 06:48

    英特爾?NCS2運(yùn)行演示時(shí)“無(wú)法啟動(dòng)后找到啟動(dòng)設(shè)備”怎么解決?

    使用 英特爾? NCS2 運(yùn)行 推斷管道演示腳本 。 首次嘗試中成功運(yùn)行演示應(yīng)用程序。 從第二次嘗試開(kāi)始遇到錯(cuò)誤:E: [ncAPI] [ 150951] [security_ba
    發(fā)表于 03-05 06:48

    為什么Caffe模型可以直接與OpenVINO?工具套件推斷引擎API一起使用,而無(wú)法轉(zhuǎn)換為中間表示 (IR)?

    推斷 Caffe 模型直接基于 英特爾? 神經(jīng)電腦棒 2 (英特爾? NCS2)。 無(wú)法確定為什么 Caffe 模型可以直接與OpenVINO
    發(fā)表于 03-05 06:31

    英特爾OpenVINO 2025.0正式發(fā)布

    生成式AI(GenAI)模型質(zhì)量與應(yīng)用范圍上持續(xù)爆發(fā)式增長(zhǎng),DeepSeek 等頂尖模型已引發(fā)行業(yè)熱議,這種勢(shì)頭預(yù)計(jì)將在 2025年延續(xù)。本次更新聚焦性能提升、更多
    的頭像 發(fā)表于 02-21 10:20 ?738次閱讀
    <b class='flag-5'>英特爾</b><b class='flag-5'>OpenVINO</b> 2025.0正式發(fā)布

    使用PyTorch英特爾獨(dú)立顯卡訓(xùn)練模型

    《PyTorch 2.5重磅更新:性能優(yōu)化+新特性》中的一個(gè)新特性就是:正式支持英特爾獨(dú)立顯卡訓(xùn)練模型
    的頭像 發(fā)表于 11-01 14:21 ?2048次閱讀
    使用PyTorch<b class='flag-5'>在</b><b class='flag-5'>英特爾</b>獨(dú)立顯卡<b class='flag-5'>上</b>訓(xùn)練<b class='flag-5'>模型</b>

    英特爾IT的發(fā)展現(xiàn)狀和創(chuàng)新動(dòng)向

    AI大模型的爆發(fā),客觀給IT的發(fā)展帶來(lái)了巨大的機(jī)會(huì)。作為把IT發(fā)展上升為戰(zhàn)略高度的英特爾,自然推動(dòng)IT發(fā)展中注入了強(qiáng)勁動(dòng)力。英特爾IT不
    的頭像 發(fā)表于 08-16 15:22 ?957次閱讀