女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

?碳化硅助力實現PFC技術的變革

WOLFSPEED ? 來源:WOLFSPEED ? 作者:Wolfspeed ? 2024-01-02 10:01 ? 次閱讀

碳化硅助力實現 PFC 技術的變革

作者:Wolfspeed 產品市場經理 Eric Schulte

碳化硅(SiC)功率器件已經被廣泛應用于服務器電源、儲能系統和光伏逆變器等領域。近些年來,汽車行業向電力驅動的轉變推動了碳化硅(SiC)應用的增長, 也使設計工程師更加關注該技術的優勢,并拓寬其應用領域。

選擇器件技術

無論應用領域如何,每個電源設計都是以回答一些相同的基本問題著手進行的:輸入電壓、輸出電壓和輸出電流分別是多少?接下來,設計人員要考慮他們力圖在最終產品中實現的性能標準。目前,電源設計人員可以利用多種器件來滿足這些標準,包括氮化鎵(GaN)、碳化硅(SiC)和各種基于硅(Si)的技術,如 MOSFET、絕緣柵雙極晶體管IGBT)和超級結(SJ)器件(圖 1)。

wKgZomWTbmqAF_dTAABrA04tzPg592.jpg

圖 1:這些技術都有各自的優勢和最適用的應用領域

當額定擊穿電壓低于 400 V,且設計要求以低于 1 kW 的功率進行相對低頻率的操作時,硅(Si)通常是一個不錯的選擇。在制造 USB 充電器等需要高開關頻率以減小磁性元件尺寸的緊湊型應用時,氮化鎵(GaN)是一個極佳的選擇。在功率超過 1 kW、低頻率條件下的額定電壓介于 600 V 至 1,700 V 的情況下,IGBT 可與碳化硅(SiC)考慮一同使用。不過,對于更高的開關頻率或更高的功率密度而言,碳化硅(SiC)是最佳選擇。

選擇的中心

在圖 1 中,多個選擇間形成的中心位置位于中等偏高的電壓和開關頻率。然而,碳化硅(SiC)的高效率使其成為一個令人信服的選擇,因為對于物料清單成本和運營成本的權衡可能是一個決定性的因素。

Wolfspeed 碳化硅(SiC)器件具有極低的導通電阻,這意味著導通損耗低且效率高。在這方面,與硅(Si)和氮化鎵(GaN)相比(圖 2),碳化硅(SiC)在所有應用中均優于其他技術。該材料自身特性使得導通電阻隨溫度的波動小,而氮化鎵(GaN)和硅(Si)的 RDS(ON) 則比室溫下的額定值增加 2.5 倍或更多。

wKgZomWTbmqANPRNAABw5z_I8-A006.jpg

圖 2:Wolfspeed 碳化硅(SiC)器件

可在很寬的溫度范圍內保持穩定的低 RDS(ON)

實現 PFC 技術的變革

現代電源整流器是從簡單的橋式整流器發展而來的,這種整流器只需要一個“大法拉電容器”來平滑直流輸出。增加的無源功率因數校正(PFC)階段通常帶有一個工頻頻率的 LC 濾波器。這種方法適用于對效率和尺寸沒有嚴格要求的相對低功率的應用(圖 3)。

wKgaomWTbmqAcmGNAACmLgwWwOI453.jpg

圖 3:全橋整流器從簡單的無 PFC

發展到基本的無橋 PFC

如今,大多數開關電源中,升壓轉換器二極管整流橋之后作為主動 PFC 使用,其開關頻率比工頻頻率高幾個數量級,因此可以使用更小的電感器電容器。根據具體應用,在有源 PFC 電路中用碳化硅(SiC)二極管取代硅(Si)基二極管可將能效提高兩至三個百分點。

另一方面,將開關頻率從 80 kHz 提高到 200 kHz 可以縮小外形尺寸或提高功率密度達 60%。一般來說,提高開關頻率有助于縮小電感器的尺寸,并且減少電感器的銅損耗。

然而,當頻率從 200 kHz 提高到 400 kHz 時,銅損耗趨于平穩,而電感器磁芯損耗則持續增加。其結果是收益遞減,尺寸縮小 10% 至 15%,功率損耗則增加 10% 至 15%。對于那些必須縮小尺寸的應用,這或許是一個可以接受的折衷方案。

要將效率水平提高到 90% 以上,就必須重新繪制電路,去掉二極管橋。為了去掉二極管,一種方法是將電感器移至交流輸入端,并用兩個 MOSFET 替換橋式電路中的兩個底部二極管。左邊的開關在正半周提升電壓,右邊的開關在負半周提升電壓。

基本無橋電路所面臨的挑戰是,高頻率開關節點直接連至交流輸入,而直流接地相對于交流輸入是浮動的。這會導致任何寄生電容直接變成共模 EMI。解決這一問題的常見方法是通過使用無橋雙 Boost 或叫做半無橋來實現(圖 4,左)。

wKgaomWTbmqAJD0lAABWdwWH3wA419.jpg

圖 4:比較無橋雙 Boost 解決方案(左)和采用碳化硅

(SiC)實現的全橋演進形式即圖騰柱拓撲(右)

在這種拓撲結構中,左下方的兩個二極管消除了浮動接地問題,而拆分電感器則消除了開關節點與交流電源的直接連接,從而解決了共模 EMI 問題。雖然可以使用硅(Si)MOSFET,但它們的最高效率為 95% 至 96%,且占地面積更大,需兩個電感器,進而總物料清單成本可能更高。

圖騰柱拓撲

圖騰柱拓撲是無橋雙 Boost 拓撲的備選方案,其名稱來源于晶體管相互堆疊的方式(圖 4,右)。如圖所示,圖騰柱可以做成全橋 MOSFET 版本,也可以做成無橋版本,即把右側低頻率橋臂的 MOSFET 替換為二極管。

如果在連續導通模式 (CCM) 條件下工作,圖騰柱拓撲面臨的最大挑戰是來自 MOSFET 體二極管的反向恢復電荷。在從低壓側開關轉換到高壓側開關的過程中,兩個 MOSFET 不能同時導通,體二極管必須在死區時間內導通。硅(Si)的反向恢復特性降低其效率(圖 5)。

wKgaomWTbmqAXxkQAAB2Ptfay7U707.jpg

圖 5:碳化硅(SiC)與硅(Si)體二極管反向恢復比較

在所有硬開關電源設計中,當體二極管必須導通時,都會產生反向恢復損耗。碳化硅(SiC)沒有少數載流子,因此反向恢復電流幾乎為零。

而硅(Si)MOSFET 的損耗則要高出幾個數量級。這就是硅(Si)器件在圖騰柱中無法使用的原因。

全橋圖騰柱還是混合圖騰柱?

同步整流的圖騰柱是效率最高的實現方式。雖然它可以在低頻率橋臂使用硅(Si)MOSFET,但只有全部四個碳化硅(SiC)MOSFET 實現了雙向運行 — 例如,在連接智能電網的應用中,需要在復雜性和物料清單成本方面做出一些權衡。

包括服務器電源在內的大多數成本敏感型應用都采用無橋或“混合”圖騰柱拓撲,在低頻率橋臂上使用價格低廉的 PIN 二極管(圖 6)。它的優點是所使用的部件數量最少,而且隨著 Wolfspeed 的 650V 耐壓等級 C3M 碳化硅(SiC)MOSFET的推出,它是一種具有成本效益的實現方式,與全橋相比,輕負載效率降低不到 0.5%。

wKgZomWTbmqAU5oCAABHyabl1nw864.jpg

圖 6:使用碳化硅(SiC)MOSFET

和二極管的“混合”圖騰柱拓撲

然而,如圖 7 所示,要充分發揮圖騰柱 PFC 拓撲的潛力,實現高于 99% 的峰值效率,利用全部四個碳化硅(SiC)MOSFET 的全橋圖騰柱 PFC 可以消除二極管壓降,從而實現最高的效率和功率密度。

wKgZomWTbmqAOQHdAABL-d-DtiU632.jpg

圖 7:借助全碳化硅(SiC)MOSFET 的全橋圖騰柱 PFC

Wolfspeed CRD-03600AD065E-L 3.6 kW 參考設計已經證明了這一點。該參考設計包括了物料清單、原理圖、電路板布局、演示文件、應用指南等,可以下載獲取。它采用 Wolfspeed 最新的緊湊、薄型 TOLL 封裝 650 V 45 mΩ MOSFET,實現效率大于 99%,且功率密度達到 92W/in3。

這種基于碳化硅(SiC)的圖騰柱設計可為交流-直流轉換提供盡可能高的效率,使工程師能夠設計出滿足或超過最嚴格效率要求(如 80+ 鈦標準)的系統。

如需對您的設計進行仿真,可使用在線 SpeedFit 設計仿真器或 SpeedVal Kit 模塊化評估平臺,后者為系統性能的在板評估提供了一套靈活的構建模塊。如有疑問,請在我們的功率應用在線討論平臺上與 Wolfspeed 的碳化硅功率專家聯系,或瀏覽我們網站上的文檔、工具和支持等部分。

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • IGBT
    +關注

    關注

    1277

    文章

    4029

    瀏覽量

    253488
  • 晶體管
    +關注

    關注

    77

    文章

    9981

    瀏覽量

    140711
  • PFC
    PFC
    +關注

    關注

    47

    文章

    1014

    瀏覽量

    107731
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3165

    瀏覽量

    64479
  • 碳化硅
    +關注

    關注

    25

    文章

    3024

    瀏覽量

    50087

原文標題:?碳化硅助力實現 PFC 技術的變革

文章出處:【微信號:WOLFSPEED,微信公眾號:WOLFSPEED】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    先進碳化硅功率半導體封裝:技術突破與行業變革

    本文聚焦于先進碳化硅(SiC)功率半導體封裝技術,闡述其基本概念、關鍵技術、面臨挑戰及未來發展趨勢。碳化硅功率半導體憑借低內阻、高耐壓、高頻率和高結溫等優異特性,在移動應用功率密度提升
    的頭像 發表于 04-08 11:40 ?426次閱讀
    先進<b class='flag-5'>碳化硅</b>功率半導體封裝:<b class='flag-5'>技術</b>突破與行業<b class='flag-5'>變革</b>

    全球功率半導體變革:SiC碳化硅功率器件中國龍崛起

    功率器件變革中SiC碳化硅中國龍的崛起:從技術受制到全球引領的歷程與未來趨勢 當前功率器件正在經歷從傳統的硅基功率器件持續躍升到SiC碳化硅材料功率半導體的歷史
    的頭像 發表于 03-13 00:27 ?187次閱讀

    為什么碳化硅Cascode JFET 可以輕松實現硅到碳化硅的過渡?

    碳化硅具備多項技術優勢(圖1),這使其在電動汽車、數據中心,以及直流快充、儲能系統和光伏逆變器等能源基礎設施領域嶄露頭角,成為眾多應用中的新興首選技術。 表1 硅器件(Si)與碳化硅
    發表于 03-12 11:31 ?582次閱讀
    為什么<b class='flag-5'>碳化硅</b>Cascode JFET 可以輕松<b class='flag-5'>實現</b>硅到<b class='flag-5'>碳化硅</b>的過渡?

    Wolfspeed第4代碳化硅技術解析

    本白皮書重點介紹 Wolfspeed 專為高功率電子應用而設計的第 4 代碳化硅 (SiC) MOSFET 技術。基于在碳化硅創新領域的傳承,Wolfspeed 定期推出尖端技術解決方
    的頭像 發表于 02-19 11:35 ?883次閱讀
    Wolfspeed第4代<b class='flag-5'>碳化硅</b><b class='flag-5'>技術</b>解析

    SiC碳化硅MOSFET功率器件雙脈沖測試方法介紹

    碳化硅革新電力電子,以下是關于碳化硅(SiC)MOSFET功率器件雙脈沖測試方法的詳細介紹,結合其技術原理、關鍵步驟與應用價值,助力電力電子領域的革新。
    的頭像 發表于 02-05 14:34 ?616次閱讀
    SiC<b class='flag-5'>碳化硅</b>MOSFET功率器件雙脈沖測試方法介紹

    碳化硅薄膜沉積技術介紹

    多晶碳化硅和非晶碳化硅在薄膜沉積方面各具特色。多晶碳化硅以其廣泛的襯底適應性、制造優勢和多樣的沉積技術而著稱;而非晶碳化硅則以其極低的沉積溫
    的頭像 發表于 02-05 13:49 ?637次閱讀
    <b class='flag-5'>碳化硅</b>薄膜沉積<b class='flag-5'>技術</b>介紹

    碳化硅在半導體中的作用

    碳化硅(SiC)在半導體中扮演著至關重要的角色,其獨特的物理和化學特性使其成為制作高性能半導體器件的理想材料。以下是碳化硅在半導體中的主要作用及優勢: 一、碳化硅的物理特性 碳化硅具有
    的頭像 發表于 01-23 17:09 ?1086次閱讀

    產SiC碳化硅MOSFET功率模塊在工商業儲能變流器PCS中的應用

    *附件:國產SiC碳化硅MOSFET功率模塊在工商業儲能變流器PCS中的應用.pdf
    發表于 01-20 14:19

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為高功率、高頻應用中的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對器件的整體性能和使用壽命
    發表于 01-04 12:37

    Wolfspeed碳化硅助力實現高性能功率系統

    Wolfspeed碳化硅助力實現高性能功率系統
    發表于 10-24 10:51 ?1次下載

    碳化硅功率器件的工作原理和應用

    碳化硅(SiC)功率器件近年來在電力電子領域取得了顯著的關注和發展。相比傳統的硅(Si)基功率器件,碳化硅具有許多獨特的優點,使其在高效能、高頻率和高溫環境下的應用中具有明顯的優勢。本文將探討碳化硅功率器件的原理、優勢、應用及其
    的頭像 發表于 09-13 11:00 ?1142次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的工作原理和應用

    Wolfspeed推出創新碳化硅模塊

    全球領先的芯片制造商 Wolfspeed 近日宣布了一項重大技術創新,成功推出了一款專為可再生能源、儲能系統以及高容量快速充電領域設計的碳化硅模塊。這款模塊以 Wolfspeed 最尖端的 200 毫米碳化硅晶片為核心,
    的頭像 發表于 09-12 17:13 ?799次閱讀

    碳化硅功率器件的原理簡述

    隨著科技的飛速發展,電力電子領域也迎來了前所未有的變革。在這場變革中,碳化硅(SiC)功率器件憑借其獨特的性能優勢,逐漸成為業界關注的焦點。本文將深入探討碳化硅功率器件的原理、應用、優
    的頭像 發表于 09-11 10:47 ?1173次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的原理簡述

    碳化硅功率器件的優點和應用

    碳化硅(SiliconCarbide,簡稱SiC)功率器件是近年來電力電子領域的一項革命性技術。與傳統的硅基功率器件相比,碳化硅功率器件在性能和效率方面具有顯著優勢。本文將深入探討碳化硅
    的頭像 發表于 09-11 10:44 ?1017次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的優點和應用