女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡算法三大類

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經網絡算法三大類

卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種常用的人工神經網絡,它的主要應用領域是圖像識別和計算機視覺方面。CNN通過卷積層、池化層和全連接層等組成,這些組成形成了 CNN 的算法三大類,即卷積層、池化層和全連接層。下面,本文將著重講解 CNN 的算法三大類。

一、卷積層

卷積層是卷積神經網絡最重要的部分之一,它是由一組過濾器或卷積核組成的。卷積核的作用就是掃描整張圖像的各個像素點,然后提取其中的特征,這些特征可以是邊緣、角、顏色、紋理、線條等等。卷積核在掃描時,每掃描一次就移動一定的步長,通常步長為1,也可以是其他的值。卷積核掃描圖像時,會在每個窗口區域上做卷積運算,然后再進行匯集。

其中,f和w分別是圖像和卷積核,卷積核大小為k x k,步長為s,偏置項為b,輸出特征圖的大小為 (n-k)/s +1。

卷積操作的目的是對特征進行有效提取,由于卷積層可以有效提取對于某些特征比較敏感的像素值,因此卷積神經網絡的性能可以進一步提高。

二、池化層

卷積層的提取特征效果很好,但是在一張大圖像的處理中,大量的計算對于神經網絡的運行速度帶來了不小的影響,為了解決這個問題,人們提出了池化層。池化層的作用是將圖像的特征進行降維,從而減少神經網絡的參數量,同時也能夠避免某些特征的過度擬合。池化層更多的是一種取樣策略,該層不是直接對圖像進行運算,而是對輸出結果進行采樣。常見的池化方式有最大池化和平均池化。

最大池化:指選取激活值最大的像素作為采樣值,例如 $2 \times 2$ 的矩陣

在最大池化操作中,我們可以采用 $2 \times 2$ 池化器,它將第一行第一列的值和第一行第二列的值做個比較,然后取出最大值。同樣的,它也可以采用第二行第一列和第二行第二列中的最大值

最大池化的尺寸可以設定,一般是選擇 $2 \times 2$ 的池化器。最大池化不僅可以對像素值進行降維處理,而且能夠提取出一些特征,例如它可以提取圖像的強度、顏色等等特征。

平均池化:平均池化與最大值池化很相似,不同的是它并不是直接選擇激活值最大的像素,而是選擇區域內值的平均值。在直覺上,最大池化更適合在數據中選擇有用的特征,而平均池化更加適合一些簡單的分類任務。

三、全連接層

卷積層和池化層只是對圖像的特征進行二維處理,而全連接層是將所有的特征進行展開,并與權重相乘相加。它的作用是將卷積層提取到的圖像特征轉化為特征向量并輸入到分類器中。全連接層和傳統的神經網絡傳輸方式一樣,但不同的是,它是對每個單元都進行了連接處理,因此它需要處理的數據也比較龐大,是四大環節中運算量最大的一個部分。

總結

卷積神經網絡算法可以劃分為三大類:卷積層、池化層和全連接層。卷積層是卷積神經網絡的核心部分,其目的是對特征進行有效提取;池化層是對特征進行降維,從而減少神經網絡的參數量,同時也能夠避免某些特征的過度擬合;全連接層將卷積層提取到的圖像特征轉化為特征向量并輸入到分類器中。卷積神經網絡通過組合不同的層可以實現卓越的性能,在圖像識別、語音識別、自然語言處理等領域都能夠起到非常優秀的作用。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    卷積神經網絡如何監測皮帶堵料情況 #人工智能

    卷積神經網絡
    jf_60804796
    發布于 :2025年07月01日 17:08:42

    無刷電機小波神經網絡轉子位置檢測方法的研究

    摘要:論文通過對無刷電機數學模型的推導,得出轉角:與相相電壓之間存在映射關系,因此構建了一個以相相電壓為輸人,轉角為輸出的小波神經網絡來實現轉角預測,并采用改進遺傳算法來訓練
    發表于 06-25 13:06

    BP神經網絡卷積神經網絡的比較

    BP神經網絡卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋
    的頭像 發表于 02-12 15:53 ?665次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播
    的頭像 發表于 02-12 15:18 ?766次閱讀

    BP神經網絡與深度學習的關系

    ),是一種多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小化
    的頭像 發表于 02-12 15:15 ?855次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工
    的頭像 發表于 01-09 10:24 ?1188次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡的實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發展,多種實現工具和框架應運而生,為研究人員和開發者提供了強大的支持。 TensorFlow 概述
    的頭像 發表于 11-15 15:20 ?669次閱讀

    卷積神經網絡的參數調整方法

    卷積神經網絡因其在處理具有空間層次結構的數據時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數的合理設置。參數調整是一個復雜的過程,涉及到多個超參數的選擇和優化。 網絡架構參數
    的頭像 發表于 11-15 15:10 ?1206次閱讀

    卷積神經網絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發展,卷積神經網絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發表于 11-15 14:58 ?803次閱讀

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統
    的頭像 發表于 11-15 14:53 ?1868次閱讀

    深度學習中的卷積神經網絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經網絡
    的頭像 發表于 11-15 14:52 ?845次閱讀

    卷積神經網絡的基本原理與算法

    卷積神經網絡(Convolutional Neural Networks,CNN)是一包含卷積計算且具有深度結構的前饋神經網絡(Feedf
    的頭像 發表于 11-15 14:47 ?1776次閱讀

    Moku人工神經網絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經網絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調節校準、閉環反饋等應用。如果您
    的頭像 發表于 11-01 08:06 ?663次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數據中提
    發表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發板體驗】RKNN神經網絡算法開發環境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數據集,在深度神經網絡算法中,模型的訓練離不開大量的數據集,數據集用于
    發表于 10-10 09:28