女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡python代碼

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經網絡python代碼 ;

卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種可以在圖像處理和語音識別等領域中很好地應用的神經網絡。它的原理是通過不斷的卷積操作,將不同層次的特征進行提取,從而通過反向傳播算法不斷優化網絡權重,最終實現分類和預測等任務。

在本文中,我們將介紹如何使用Python實現卷積神經網絡,并詳細說明每一個步驟及其原理。

第一步:導入必要的庫

在開始編寫代碼前,我們需要先導入一些必要的Python庫。具體如下所示:

```python
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
```

其中,numpy庫主要用于在Python中實現矩陣運算;matplotlib庫則用于數據可視化,常被用于圖像的顯示;tensorflow庫和keras庫則是深度學習領域中非常常用的庫,尤其是keras庫,是一種高度封裝的深度學習框架,使得我們可以很方便地構建深度神經網絡。

第二步:加載數據

在本文中,我們將使用keras中自帶的cifar10數據集作為我們的實驗數據。這個數據集中包含了60000張32*32像素的彩色圖片,涵蓋了10個不同的分類,如汽車、飛機等。我們可以通過下面的代碼來加載數據:

```python
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
```

其中,x_train和y_train分別表示訓練集的圖像和標簽,x_test和y_test則表示測試集的圖像和標簽。

第三步:預處理數據

當我們成功地加載了數據后,下一步就是對數據進行預處理。由于keras中的模型需要接受統一維度和歸一化的輸入數據,因此我們需要對數據進行特殊處理。具體如下所示:

```python
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
```

其中,我們首先將數據類型轉換為float32類型,然后將像素值進行了歸一化處理,這樣可以使得數據的取值范圍在0到1之間,避免了過大或過小的像素值對模型造成不好的影響。

第四步:構建卷積神經網絡模型

接下來,我們將使用keras來構建一個卷積神經網絡模型。具體如下所示:

```python
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=x_train.shape[1:]))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

在這里,我們定義了一個Sequential()模型,它將我們的卷積神經網絡堆疊起來。模型中包含了卷積層和池化層,它們分別用來提取圖像特征和縮小圖像大小。其中,Conv2D層就是卷積層,它利用卷積核在特定區域內進行卷積操作,從而提取不同級別的特征;MaxPooling2D層則是池化層,它使用最大池化方式來降低每個特征圖的大小,以減少計算量。在卷積層和池化層之后,我們還添加了兩個密集層,它們用于分類和輸出。

第五步:編譯模型

在構建好卷積神經網絡模型后,我們還需要對其進行編譯。具體如下所示:

```python
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

在這里,我們使用默認的adam優化器進行模型優化,損失函數則選用了分類問題中常用的交叉熵損失函數。同時,我們還定義了關鍵指標accuracy,這可以幫助我們對模型性能進行評估。

第六步:訓練模型

完成模型的編譯之后,我們就可以開始訓練模型了。為了避免過擬合,我們需要通過在訓練數據上進行數據增強來增加數據量,這樣可以提高模型的泛化性能。同時,我們還需要設置一些超參數來控制訓練過程。具體如下所示:

```python
datagen = ImageDataGenerator(
rotation_range=0,
horizontal_flip=True,
vertical_flip=False,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1
)

history = model.fit(
datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32,
epochs=50,
validation_data=(x_test, y_test),
verbose=1
)
```

在這里,我們通過調用ImageDataGenerator類來實現數據增強。其中,rotation_range定義了旋轉范圍,horizontal_flip則用于進行水平翻轉,vertical_flip用于垂直翻轉,width_shift_range和height_shift_range則用于進行隨機平移操作,zoom_range用于進行隨機縮放。通過這些操作,我們可以有效地擴充訓練數據集。

在訓練過程中,我們需要設置一些超參數,比如批次大小,訓練輪數等。在這里,我們將每個批次的大小設置為32,訓練輪數設置為50,steps_per_epoch參數則是用來控制每個訓練輪中批次的個數。同時,我們還需要通過validation_data參數來設置測試數據集,這樣可以方便我們對模型性能進行評估。最后,我們指定verbose參數為1,這可以幫助我們在訓練過程中監控模型性能。

第七步:模型評估

在完成模型的訓練之后,我們需要對其性能進行評估。這可以通過使用keras提供的evaluate()函數來實現。具體如下所示:

```python
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

在這里,我們可以輸出測試損失和測試精度等指標,這可以幫助我們快速了解模型的性能。

第八步:可視化訓練結果

最后,我們還可以使用matplotlib庫來可視化我們的訓練結果,這可以幫助我們更好地了解模型的性能趨勢。具體如下所示:

```python
fig, axs = plt.subplots(1, 2, figsize=(15, 5))

axs[0].plot(history.history['accuracy'])
axs[0].plot(history.history['val_accuracy'])
axs[0].set_title('Model accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].set_xlabel('Epoch')
axs[0].legend(['Train', 'Test'], loc='upper left')

axs[1].plot(history.history['loss'])
axs[1].plot(history.history['val_loss'])
axs[1].set_title('Model loss')
axs[1].set_ylabel('Loss')
axs[1].set_xlabel('Epoch')
axs[1].legend(['Train', 'Test'], loc='upper left')

plt.show()
```

在這里,我們將訓練的準確率和損失值分別進行了可視化,通過這些圖表,我們可以更好地了解模型在訓練過程中的性能趨勢。

綜上所述,以上就是用Python實現卷積神經網絡的完整流程,包括如何加載數據、預處理數據、構建模型、編譯模型、訓練模型、評估模型和可視化結果等。希望這篇文章能對讀者們學習卷積神經網絡提供一定的幫助。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 圖像處理
    +關注

    關注

    27

    文章

    1329

    瀏覽量

    58034
  • python
    +關注

    關注

    56

    文章

    4827

    瀏覽量

    86694
  • 卷積神經網絡

    關注

    4

    文章

    369

    瀏覽量

    12298
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    基于FPGA搭建神經網絡的步驟解析

    本文的目的是在一個神經網絡已經通過python或者MATLAB訓練好的神經網絡模型,將訓練好的模型的權重和偏置文件以TXT文件格式導出,然后通過python程序將txt文件轉化為coe
    的頭像 發表于 06-03 15:51 ?391次閱讀
    基于FPGA搭建<b class='flag-5'>神經網絡</b>的步驟解析

    BP神經網絡卷積神經網絡的比較

    BP神經網絡卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋
    的頭像 發表于 02-12 15:53 ?658次閱讀

    深度學習入門:簡單神經網絡的構建與實現

    深度學習中,神經網絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經網絡。 神經網絡由多個神經元組成,
    的頭像 發表于 01-23 13:52 ?524次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1178次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡的實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發展,多種實現工具和框架應運而生,為研究人員和開發者提供了強大的支持。 TensorFlow 概述
    的頭像 發表于 11-15 15:20 ?666次閱讀

    卷積神經網絡的參數調整方法

    卷積神經網絡因其在處理具有空間層次結構的數據時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數的合理設置。參數調整是一個復雜的過程,涉及到多個超參數的選擇和優化。 網絡架構參數
    的頭像 發表于 11-15 15:10 ?1203次閱讀

    卷積神經網絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發展,卷積神經網絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發表于 11-15 14:58 ?795次閱讀

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統
    的頭像 發表于 11-15 14:53 ?1862次閱讀

    深度學習中的卷積神經網絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經網絡
    的頭像 發表于 11-15 14:52 ?839次閱讀

    卷積神經網絡的基本原理與算法

    卷積神經網絡(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網絡(Feedforward Neural Networks
    的頭像 發表于 11-15 14:47 ?1772次閱讀

    如何使用Python構建LSTM神經網絡模型

    構建一個LSTM(長短期記憶)神經網絡模型是一個涉及多個步驟的過程。以下是使用Python和Keras庫構建LSTM模型的指南。 1. 安裝必要的庫 首先,確保你已經安裝了Python和以下庫
    的頭像 發表于 11-13 10:10 ?1564次閱讀

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數據中提
    發表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發板體驗】RKNN神經網絡-車牌識別

    LPRNet基于深層神經網絡設計,通過輕量級的卷積神經網絡實現車牌識別。它采用端到端的訓練方式,不依賴字符分割,能夠直接處理整張車牌圖像,并輸出最終的字符序列。這種設計提高了識別的實時性和準確性
    發表于 10-10 16:40

    SD NAND芯片的測評與使用 基于卷積神經網絡的數字識別

    目錄 前言: 簡介: 對照: 測試: 使用: 照片存儲: 基于卷積神經網絡的數字識別: ———————————————— 前言: 感謝深圳雷龍公司寄送的樣品,其中包括兩張2代的4gbit
    的頭像 發表于 07-24 18:08 ?1785次閱讀

    Python自動訓練人工神經網絡

    人工神經網絡(ANN)是機器學習中一種重要的模型,它模仿了人腦神經元的工作方式,通過多層節點(神經元)之間的連接和權重調整來學習和解決問題。Python由于其強大的庫支持(如Tenso
    的頭像 發表于 07-19 11:54 ?696次閱讀