女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習如何讓Turing 顯卡如虎添翼

jf_pJlTbmA9 ? 來源:jf_pJlTbmA9 ? 作者:jf_pJlTbmA9 ? 2023-08-01 14:55 ? 次閱讀

深度學習革命席卷全球的第一個載體是處理器,即最初為游戲而生的 GPU。借助我們的 Turing 架構,深度學習重返游戲戰場,并為其帶來了驚艷無比的性能。

在本周的歐洲站 GPU 技術大會上,NVIDIA 首席執行官黃仁勛先生向在場的 3000 多名與會者表示:Turing 結合了新一代可編程著色器和 Tensor Core,前者支持計算機圖形處理界的“圣杯”——實時光線追蹤,后者是一款可加速各類深度學習任務的新型處理器

黃仁勛先生解釋稱,這種深度學習能力可以讓 Turing 以其他處理器前所未有的方式實現性能飛躍。

黃仁勛先生表示:“如果我們創建的神經網絡架構和 AI 能夠推理并構思某種類型的像素,那么我們就能夠使其在每秒可執行 114 萬億次浮點運算的 Tensor Core 上運行,從而在提升性能的同時也會生成美麗的圖像。”

“我們已經利用計算機圖形技術讓 Turing 實現了這一點,” 黃仁勛先生補充道。

利用深度學習超級采樣 (DLSS) 技術,Turing 可以通過著色器生成一些像素,然后通過 AI 構思出其余像素。

“最終,借助我們每秒可執行 114 萬億次浮點運算的 Tensor Core 和每秒可執行 15 萬億次浮點運算的可編程著色器,我們取得了驚人的成就,” 黃仁勛先生如是說。

這意味著性能的巨大飛躍。

“在每個系列中,Turing GPU 都能使性能提升一倍,” 黃仁勛先生說道,“這是一種計算機圖形的全新處理方式,使傳統計算機圖形技術與深度學習得以完美融合?!?/p>

在驚艷無比的演示環節,黃仁勛先生展示了如何利用最新款 NVIDIA RTX GPU 這個讓實現實時光線追蹤首次實現的設備通過數字方式還原一張標志性登月照片的場景——宇航員 Buzz Aldrin 緩緩從登月艙的梯子爬下來。

這場演示打消了有些人懷疑這張登月照片純屬偽造的念頭,因為他們覺得宇航員 Aldrin 下到月球表面時正處于登月艙的遮擋下,本應該昏暗不清;但在這張照片中,宇航員的亮度卻很高。而這次的模擬卻顯示出,月球表面的反光剛好可以造成照片中展示的亮度效果。

“這就是 NVIDIA RTX 的優勢。利用這種渲染技術,我們可以模擬出光的物理屬性,讓物體呈現出它們本來的面目,” 黃仁勛先生說道。

責任編輯:彭菁

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19793

    瀏覽量

    233404
  • NVIDIA
    +關注

    關注

    14

    文章

    5232

    瀏覽量

    105712
  • 顯卡
    +關注

    關注

    16

    文章

    2502

    瀏覽量

    69158
  • 深度學習
    +關注

    關注

    73

    文章

    5554

    瀏覽量

    122442
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    軍事應用中深度學習的挑戰與機遇

    人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創新與發展。深度學習技術的發展深刻影響了軍事發展趨勢,導致戰爭形式和模式發生重大變化。本文將概述
    的頭像 發表于 02-14 11:15 ?424次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?1651次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發表于 10-28 14:05 ?534次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?1058次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發表于 10-25 09:22 ?1019次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發表于 10-23 15:25 ?2625次閱讀

    FPGA做深度學習能走多遠?

    ,共同進步。 歡迎加入FPGA技術微信交流群14群! 交流問題(一) Q:FPGA做深度學習能走多遠?現在用FPGA做深度學習加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發表于 09-27 20:53

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨著深度
    的頭像 發表于 07-09 15:54 ?1887次閱讀

    深度學習中的無監督學習方法綜述

    深度學習作為機器學習領域的一個重要分支,近年來在多個領域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領域。然而,深度學習模型
    的頭像 發表于 07-09 10:50 ?1493次閱讀

    深度學習與nlp的區別在哪

    深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯系,也有區別。本文將介紹深度學習與NLP的區別。 深度
    的頭像 發表于 07-05 09:47 ?1467次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得檢測難度顯著增加。隨著深度學習技術的快速發展,尤其是卷積神經網絡(CNN
    的頭像 發表于 07-04 17:25 ?1850次閱讀

    深度學習中的模型權重

    深度學習這一充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優化、管理以及應用等多個方面,深入探討
    的頭像 發表于 07-04 11:49 ?3727次閱讀

    深度學習常用的Python庫

    深度學習作為人工智能的一個重要分支,通過模擬人類大腦中的神經網絡來解決復雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度學習研究和應用的首選工具。
    的頭像 發表于 07-03 16:04 ?1033次閱讀

    TensorFlow與PyTorch深度學習框架的比較與選擇

    深度學習作為人工智能領域的一個重要分支,在過去十年中取得了顯著的進展。在構建和訓練深度學習模型的過程中,深度
    的頭像 發表于 07-02 14:04 ?1477次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發表于 07-01 11:40 ?2180次閱讀