女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

X3派AI算法推理快速入門

地瓜機器人 ? 2022-07-18 14:24 ? 次閱讀

0 環境安裝

在進行AI算法開發之前請參考X3派用戶手冊完成系統安裝及配置,此時X3派上已默認安裝好了地平線Python版本AI推理引擎(hobot_dnn)及其配套依賴環境。hobot_dnn提供了ModelpyDNNTensor、TensorProperties三個類和load接口。您可通過如下方式獲取hobot_dnn的基本信息:

-------------------------------------------------------------------------------------------------------------------------------

python3
>>> from hobot_dnn import pyeasy_dnn as dnn
>>> dir(dnn)
['Model', 'TensorProperties', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'load', 'pyDNNTensor']

-------------------------------------------------------------------------------------------------------------------------------

AI推理引擎的更新可參考如下方式(出于系統安全、穩定性的考慮,建議統一通過APT命令更新X3派板級開發包):

-------------------------------------------------------------------------------------------------------------------------------

#更新package列表
sudo apt update
#升級所有已安裝的軟件包到最新版本
sudo apt full-upgrade
#清除緩存文件(非必須)
sudo apt clean
#重啟設備
sudo reboot

-------------------------------------------------------------------------------------------------------------------------------

1 推理接口介紹

1.1 Model

AI算法模型類,描述模型的名稱,輸入、輸出數據屬性信息,forward 方法用來完成算法的推理。

-------------------------------------------------------------------------------------------------------------------------------

class hobot_dnn.pyeasy_dnn.Model
'''
Parameters
1、name (string):模型名稱
2、inputs (tuple(hobot_dnn.pyeasy_dnn.pyDNNTensor)):模型的輸入tensor
3、outputs (tuple(hobot_dnn.pyeasy_dnn.pyDNNTensor)):模型的輸出tensor
4、forward (args &args, kwargs &kwargs):模型推理函數接口,輸入模型推理所必要的參數,返回模型推理結果
parameters:
input_tensor:輸入數據
core_id (int):模型推理的core id,可為0,1,2,默認為0表示任意核推理
priority (int):當前模型推理任務的優先級,范圍[0~255],越大優先級越高
'''

-------------------------------------------------------------------------------------------------------------------------------

其中,forward方法的input_tensor支持三種格式輸入:

poYBAGLUxLSAc49LAAEU1HRQngQ810.png

forward方法的返回值為模型推理結果,有如下兩種情況:

pYYBAGLUxLSAIOqJAADJF3iDWRc720.png

resizer模型指在模型轉換時input_source設置為“resizer”編譯生成的模型,相關配置方式可參考社區X3 用戶手冊。resizer模型推理時,hobot_dnn會先使用ROI從輸入數據中摳圖后resize到模型輸入大小再送入模型進行推理。
*目前resizer模式暫只支持單輸入的nv12/nv12_bt601模型。

1.2 pyDNNTensor

AI 算法輸入、輸出 tensor 類

-------------------------------------------------------------------------------------------------------------------------------

class hobot_dnn.pyeasy_dnn.pyDNNTensor
'''
Parameters:
1、properties (TensorProperties):tensor的屬性,詳細參見本文1.3節
2、buffer (numpy):tensor中的數據,數據訪問方式同numpy
3、name (string):tensor的名稱
'''

-------------------------------------------------------------------------------------------------------------------------------

1.3 TensorProperties

AI 算法輸入/輸出 tensor 的屬性類

-------------------------------------------------------------------------------------------------------------------------------

class hobot_dnn.pyeasy_dnn.TensorProperties
'''
Parameters:
1、tensor_type (string):tensor的數據類型,如:NV12、BGR、float32等
2、dtype (string):數據的存儲類型,同numpy數據類型,如:int8、uint8、float32等
3、layout (string):數據排布格式,NHWC或者NCHW
4、shape (tuple):數據的shape信息,例如:(1,3,224,224)
'''

-------------------------------------------------------------------------------------------------------------------------------

1.4 load

load接口用于加載模型

-------------------------------------------------------------------------------------------------------------------------------

hobot_dnn.pyeasy_dnn.load(model_file)
'''
接口支持兩種模型加載方式:
1、輸入模型的文件路徑,加載單個模型,或者單個pack模型
model_file = "/userdata/single_model.bin"
models = hobot_dnn.pyeasy_dnn.load(model_file)
2、輸入模型的文件列表,加載多個模型
model_file = ["model1.bin", "model2.bin"]
models = hobot_dnn.pyeasy_dnn.load(model_file)
接口返回hobot_dnn.pyeasy_dnn.Model類型的tuple列表
'''

-------------------------------------------------------------------------------------------------------------------------------

2 快速上手示例

X3派配套AI推理示例默認安裝在/app/ai_inference目錄下,包含如下示例:

-------------------------------------------------------------------------------------------------------------------------------

|-- 01_basic_sample # 從本地讀取圖片并完成mobilenetv1分類模型推理
|-- 02_usb_camera_sample # 從USB camera獲取視頻數據并完成FCOS檢測模型推理
|-- 03_mipi_camera_sample # 從MIPI camera獲取視頻數據并完成FCOS檢測模型推理
|-- 05_web_display_camera_sample # 基于MIPI Camera的FCOS目標檢測及web端展示
|-- 06_yolov3_sample # 從本地讀取圖片并完成Yolov3檢測模型推理
|-- 07_yolov5_sample # 從本地讀取圖片并完成Yolov5檢測模型推理
`-- models

-------------------------------------------------------------------------------------------------------------------------------

本節將以01_basic_sample為例,為大家展示如何使用hobot_dnn完成模型推理。運行以下示例您需要準備編譯好的混合異構模型mobilenetv1_224x224_nv12.bin(存放于/app/ai_inference/models路徑下),以及一張圖片zebra_cls.jpg(存放于01_basic_sample文件夾下)。

-------------------------------------------------------------------------------------------------------------------------------

from hobot_dnn import pyeasy_dnn as dnn
import numpy as np
import cv2

# 查看模型輸入輸出節點的信息
def print_properties(pro):
print("tensor type:", pro.tensor_type)
print("data type:", pro.dtype)
print("layout:", pro.layout)
print("shape:", pro.shape)

# 依據模型input_type_rt決定是否需要進行數據格式轉換(本實例所用模型為nv12輸入)
def bgr2nv12_opencv(image):
height, width = image.shape[0], image.shape[1]
area = height * width
yuv420p = cv2.cvtColor(image, cv2.COLOR_BGR2YUV_I420).reshape((area * 3 // 2,))
y = yuv420p[:area]
uv_planar = yuv420p[area:].reshape((2, area // 4))
uv_packed = uv_planar.transpose((1, 0)).reshape((area // 2,))

nv12 = np.zeros_like(yuv420p)
nv12[:height * width] = y
nv12[height * width:] = uv_packed
return nv12

# 1.加載模型
models = dnn.load('../models/mobilenetv1_224x224_nv12.bin')

# 2.查看模型輸入輸出節點的信息
for input in models[0].inputs:
print_properties(input.properties)
for output in models[0].outputs:
print_properties(output.properties)

# 3.準備輸入數據
# 打開圖片
img_file = cv2.imread('./zebra_cls.jpg')
# 把圖片縮放到模型的輸入尺寸
h, w = models[0].inputs[0].properties.shape[2], models[0].inputs[0].properties.shape[3]
resized_data = cv2.resize(img_file, (w, h), interpolation=cv2.INTER_AREA)
nv12_data = bgr2nv12_opencv(resized_data)

# 4.模型推理
outputs = models[0].forward(nv12_data)

# 5.后處理
np.argmax(outputs[0].buffer)
print("cls id: %d Confidence: %f" % (np.argmax(outputs[0].buffer), outputs[0].buffer[0][np.argmax(outputs[0].buffer)]))

-------------------------------------------------------------------------------------------------------------------------------

運行上述示例,即可在終端查看到如下信息:

poYBAGLUxLiAW8JhAAZI3C0maJw059.png

本文轉自地平線開發者社區

原作者:顏值即正義

原鏈接:https://developer.horizon.ai/forumDetail/98129467158916308

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1804

    文章

    48716

    瀏覽量

    246521
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    AI推理的存儲,看好SRAM?

    電子發燒友網報道(文/黃晶晶)近幾年,生成式AI引領行業變革,AI訓練率先崛起,帶動高帶寬內存HBM一飛沖天。但我們知道AI推理的廣泛應用才能推動A
    的頭像 發表于 03-03 08:51 ?1516次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>推理</b>的存儲,看好SRAM?

    韻樂Vinal X3/X5卡拉OK音頻處理器調音軟件簡介

    韻樂Vinal X3/X5卡拉OK音頻處理器調音軟件軟件簡介韻樂Vinal X3/X5調音軟件具有音箱處理器功能的卡拉ok效果器每個功能部分都獨立可調且有相應的PC界面可直觀調節易于操
    發表于 05-16 15:33 ?0次下載

    RDK X3 帶飛的智能護理系統:讓機器人秒變貼心小棉襖

    濟往開來團隊帶著超燃黑科技來了!基于 RDK X3 開發的老年智能監控系統,跌倒秒報警、手勢一鍵呼叫、還能陪嘮嗑!最絕的是 開源代碼直接甩鏈接 ,技術黨狂喜!
    的頭像 發表于 05-09 21:53 ?138次閱讀
    RDK <b class='flag-5'>X3</b> 帶飛的智能護理系統:讓機器人秒變貼心小棉襖

    AI端側部署開發(SC171開發套件V3

    Stack模型轉化指南------VMware虛擬機環境操作.pdf 3 Fibo AI Stack模型推理指南 *附件:文檔:Fibo AI Stack模型
    發表于 04-16 18:30

    當我問DeepSeek AI爆發時代的FPGA是否重要?答案是......

    資源浪費。例如,在深度學習模型推理階段,FPGA可以針對特定的神經網絡結構進行硬件加速,提高推理速度。 3.支持邊緣計算與實時應用 ? 邊緣計算:隨著物聯網的發展,越來越多的AI任務需
    發表于 02-19 13:55

    “你的錢來了”:財神1號,RDK X3驅動,自動撿錢不手軟!

    采用 RDK X3 打造無情的撿錢機器,每天8億紙幣掉在路面上,財神1號幫你撿個夠!
    的頭像 發表于 02-18 11:15 ?519次閱讀
    “你的錢來了”:財神1號,RDK <b class='flag-5'>X3</b>驅動,自動撿錢不手軟!

    使用NVIDIA推理平臺提高AI推理性能

    NVIDIA推理平臺提高了 AI 推理性能,為零售、電信等行業節省了數百萬美元。
    的頭像 發表于 02-08 09:59 ?620次閱讀
    使用NVIDIA<b class='flag-5'>推理</b>平臺提高<b class='flag-5'>AI</b><b class='flag-5'>推理</b>性能

    OpenAI即將推出o3 mini推理AI模型

    近日,OpenAI首席執行官Sam Altman在社交媒體平臺X上發表了一篇引人關注的文章。在文章中,他透露了一個重要信息:OpenAI已經成功完成了全新推理AI模型o3 mini版本
    的頭像 發表于 01-20 10:54 ?498次閱讀

    科大訊飛即將發布訊飛星火深度推理模型X1

    ,標志著科大訊飛在AI技術領域的又一次重大突破。訊飛星火深度推理模型X1將為科大訊飛的智能體產品注入更為強大的AI能力,使其在處理復雜任務和進行深度
    的頭像 發表于 01-08 10:30 ?667次閱讀

    Cadence推出Palladium Z3與Protium X3系統

    楷登電子(Cadence)公司近日宣布,正式推出新一代Cadence? Palladium? Z3 Emulation和Protium? X3 FPGA原型驗證系統。這一組合標志著數字孿生
    的頭像 發表于 01-07 13:48 ?884次閱讀

    李開復:中國擅長打造經濟實惠的AI推理引擎

    10月22日上午,零一萬物公司的創始人兼首席執行官李開復在與外媒的交流中透露,其公司旗下的Yi-Lightning(閃電模型)在推理成本上已實現了顯著優勢,比OpenAI的GPT-4o模型低了31倍。他強調,中國擅長打造經濟實惠的AI
    的頭像 發表于 10-22 16:54 ?662次閱讀

    TMS320LF240x DSP的C語言和匯編代碼快速入門

    電子發燒友網站提供《TMS320LF240x DSP的C語言和匯編代碼快速入門.pdf》資料免費下載
    發表于 10-18 10:14 ?1次下載
    TMS320LF240<b class='flag-5'>x</b> DSP的C語言和匯編代碼<b class='flag-5'>快速</b><b class='flag-5'>入門</b>

    模擬DAC38RF8x輸入/輸出緩沖器信息的快速入門方法

    電子發燒友網站提供《模擬DAC38RF8x輸入/輸出緩沖器信息的快速入門方法.pdf》資料免費下載
    發表于 10-09 11:21 ?0次下載
    模擬DAC38RF8<b class='flag-5'>x</b>輸入/輸出緩沖器信息的<b class='flag-5'>快速</b><b class='flag-5'>入門</b>方法

    AMD助力HyperAccel開發全新AI推理服務器

    提高成本效率。HyperAccel 針對新興的生成式 AI 應用提供超級加速的芯片 IP/解決方案。HyperAccel 已經打造出一個快速、高效且低成本的推理系統,加速了基于轉換器的大型語言模型
    的頭像 發表于 09-18 09:37 ?765次閱讀
    AMD助力HyperAccel開發全新<b class='flag-5'>AI</b><b class='flag-5'>推理</b>服務器

    AM263x控制卡快速入門指南

    電子發燒友網站提供《AM263x控制卡快速入門指南.pdf》資料免費下載
    發表于 08-27 10:35 ?0次下載
    AM263<b class='flag-5'>x</b>控制卡<b class='flag-5'>快速</b><b class='flag-5'>入門</b>指南