女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí):transformers的近期工作成果綜述

恬靜簡樸1 ? 來源:恬靜簡樸1 ? 作者:恬靜簡樸1 ? 2022-10-19 10:04 ? 次閱讀

transformers的近期工作成果綜述

基于 transformer 的雙向編碼器表示(BERT)和微軟的圖靈自然語言生成(T-NLG)等模型已經(jīng)在機器學(xué)習(xí)世界中廣泛的用于自然語言處理(NLP)任務(wù),如機器翻譯、文本摘要、問題回答、蛋白質(zhì)折疊預(yù)測,甚至圖像處理任務(wù)。

在本文中,對基于transformer 的工作成果做了一個簡單的總結(jié),將最新的transformer 研究成果(特別是在2021年和2022年發(fā)表的研究成果)進(jìn)行詳細(xì)的調(diào)研。

這張圖與一篇調(diào)查論文[Tay 2022]中的圖相似,但被調(diào)transformers會更新并且它們的整體分類也有很大的不同。

poYBAGNPWyeAM2fwAAFk3sRxWGg654.jpg

如圖所示,主要類別包括計算復(fù)雜度、魯棒性、隱私性、近似性和模型壓縮等等。本文文字和專業(yè)術(shù)語較多,并且均翻譯自論文原文,如有錯誤(很可能)請諒解。

計算復(fù)雜度

一些研究方向是以各種方式解決transformer的O(N2)計算復(fù)雜度。transformer的關(guān)鍵問題之一是它與輸入序列長度相關(guān)的二次復(fù)雜度。這意味著我們必須為每一層和注意頭計算N*N個注意矩陣。人們嘗試了各種方法來降低這種O(N2)復(fù)雜度,包括使用緩存體系結(jié)構(gòu)。

Sparse transformer是解決這種復(fù)雜性的流行方法之一。每個輸出位置從輸入位置的一個子集計算權(quán)重。如果子集是√(N),那么transformer的復(fù)雜度降低到O(N *√(N)),并允許它處理更大范圍的依賴關(guān)系。

Longformer使用了帶窗口的局部注意力(對于窗口大小為w的窗口,每個令牌會注意到兩邊的w/2個令牌,而不是整個輸入)并且使用特殊令牌的任務(wù)驅(qū)動的全局注意力進(jìn)行組合。

另一項被稱為BigBird [Manzil 2020]的工作使用了圖稀疏化技術(shù)。它使用一種稱為Watts-Strogatz圖的特殊圖,它近似于一個完整的圖可以實現(xiàn)輸入序列的線性復(fù)雜度。作者表明在標(biāo)準(zhǔn)精度假設(shè)下,BigBird是圖靈完備的。他們還評估BigBird在遠(yuǎn)距離依賴的任務(wù)上的表現(xiàn),特別是在提取基因組序列(如DNA)和預(yù)測結(jié)果染色質(zhì)譜方面

Linformer使用線性投影和低秩因子分解的組合逼近點積注意運算[Wang2020]。

上面許多基于稀疏矩陣操作的transformer可能需要稀疏矩陣乘法操作,這種方式并不是在所有體系結(jié)構(gòu)上都可用。他們也傾向于堆疊更多的注意力層來彌補稀疏性,從而導(dǎo)致總體上的算力的增加。對于某些操作,如softmax操作也可能不容易;還有多項式probit運算也不容易稀疏化。

谷歌提出了一個廣義注意框架Performer,可以根據(jù)不同的相似性度量或內(nèi)核來指定廣泛的注意力機制。他們通過積極的正交隨機特征(Favor+)算法來實現(xiàn)注意力的機制。他們還表明可以通過指數(shù)函數(shù)和隨機高斯投影的組合來近似普通的softmax注意。Performer在蛋白質(zhì)序列預(yù)測任務(wù)等方面優(yōu)于標(biāo)準(zhǔn)模型。

Wang等[Wang 2021]提出了一種用于無卷積的密集預(yù)測的金字塔視覺transformer(PVT)。這一問題克服了基于VIT的模型在將密集的預(yù)測任務(wù)時遇到了困難,PVT有助于各種像素級密度預(yù)測,并且不需要卷積和非最大抑制,如目標(biāo)檢測方法。采用漸進(jìn)式收縮金字塔和空間減少注意力可以很容易地連接transformer。最后在圖像分類、目標(biāo)檢測、實例和語義分割等任務(wù)中PVT也是可用的。

Liu等人[Liu 2021]討論了transformer從語言領(lǐng)域到視覺領(lǐng)域的適應(yīng)問題,方法包括大量視覺實體的差異和與文本中的文字相比的圖像的高分辨率像素差異。為了解決這個問題,作者提出了Swin Transformer [Lui 2021],這是一種分層方法,其表示是使用移位窗口計算。該技術(shù)更有效地克服了自注意力局部窗口不重疊的問題。

Chu等人[Chu 2021]討論了空間注意對于transformer在各種任務(wù)中的性能成功的重要性。作者提出了兩個簡單而高效的體系結(jié)構(gòu):twin - pcpvt和twin - svt。twin -pcpvt使用可分離的深度卷積注意機(depth-wise convolution attention machine),又被稱為空間分離自注意力(spatial-separable self-attention - SSSA)。SSSA使用兩種類型的注意力操作:本地分組的自注意力(LSA)和全局次采樣的注意力(GSA)。LSA處理細(xì)粒度和短距離信息,而GSA則處理長距離序列和全局信息。另一個方法twin - svt同時使用LSA和帶有矩陣乘法的GSA。

光譜的復(fù)雜性

通過將自注意網(wǎng)絡(luò)替換為混合輸入令牌的線性轉(zhuǎn)換,可以設(shè)計高效的transformer來加速編碼器架構(gòu)。transformer的自注意層被參數(shù)化的傅里葉變換(Fnet)取代[Lee-Thorp 2022],然后是一個非線性和前饋網(wǎng)絡(luò)。與BERT相比,該網(wǎng)絡(luò)速度快80%,可以達(dá)到傳統(tǒng)transformer性能的92%到97%。

The Global Frequency network(GFnet) [Rao 2022]提出了一種用于令牌混合的深度全局卷積。GFnet涉及三個步驟:通過快速傅里葉變換(FFT)進(jìn)行空間令牌混合、頻率門控和反FFT進(jìn)行令牌分解。GFnet不涉及信道混合,隨著序列長度的增加,對于高像素的圖像來說消耗非常大,而且不具有自適應(yīng)能力。

Guibias等人[Guibias 2022]將令牌混合任務(wù)定義為一種操作符學(xué)習(xí)任務(wù),該任務(wù)是學(xué)習(xí)在無限尺寸空間中連續(xù)函數(shù)之間的映射。Li等人[Li 2020]討論了使用傅里葉神經(jīng)算符(FNO)求解偏微分方程(PDE)。FNO在連續(xù)域中工作良好。

將FNO應(yīng)用于高分辨率圖像輸入的視覺域,需要對PDE的FNO設(shè)計體系結(jié)構(gòu)進(jìn)行修改。這是因為高分辨路圖像由于邊緣和其他結(jié)構(gòu)而具有不連續(xù)性。信道混合FNO與信道大小有關(guān),具有二次復(fù)雜度。信道混合權(quán)重采用塊對角線結(jié)構(gòu)來解決信道混合問題。作者在MLP層的令牌之間共享權(quán)重以提高參數(shù)效率,并使用軟閾值在頻域引入稀疏性以進(jìn)行泛化。這些解決方案結(jié)合稱為自適應(yīng)傅里葉神經(jīng)算子(AFNO)。

Bai等人[Bai 2022]提出了HAT方法(High-frequency components via Adversarial Training),該方法在訓(xùn)練階段對組件進(jìn)行高頻擾動。HAT方法通過添加對抗性擾動改變訓(xùn)練圖像的高頻成分,然后用改變后的圖像訓(xùn)練ViT [Bai 2022]模型,這樣可以提高模型性能,使模型更魯棒。

魯棒性

Shao等[Shao 2021]利分析了transformer模型的魯棒性。作者使用白盒攻擊進(jìn)行了一個實驗。他們觀察到與卷積神經(jīng)網(wǎng)絡(luò)(CNNs)相比,ViT具有更好的對抗魯棒性。ViT特征包含低層信息,對對抗攻擊提供了優(yōu)越的魯棒性,并指出與增加尺寸或增加層數(shù)的純transformer模型相比,cnn和transformer的組合具有更好的魯棒性。他們還發(fā)現(xiàn)預(yù)訓(xùn)練更大的數(shù)據(jù)集并不能提高魯棒性。對于一個穩(wěn)健的模型,情況正好相反。

Bhojanapalli等人[Bhojanapalli 2021]調(diào)查了ViT模型和resnet模型針對對抗實例、自然實例和常見破壞的各種魯棒性度量。作者研究了對輸入和模型擾動的魯棒性。無論是從輸入還是從模型中去除任何一層,transformer都是魯棒的。

Paul等人[Paul 2022]研究了ViT [Dosovitskiy 2020]、cnn和Big Transformer[Kolesnikov 2020]方法的魯棒性。Paul等人[Paul 2022]在ImageNet數(shù)據(jù)集上對ViTs的魯棒性進(jìn)行了基準(zhǔn)測試。結(jié)果在表r中。通過6個實驗,作者驗證了與CNN和Big Transformer相比,ViT在魯棒性方面有了提高。這些實驗的結(jié)果包括:

實驗1:注意力是提高魯棒性的關(guān)鍵。

實驗2:預(yù)訓(xùn)練的作用很重要。

實驗3:ViT對圖像遮蔽具有較好的魯棒性。

實驗4:傅里葉頻譜分析顯示ViT的靈敏度較低。

實驗5:對抗性擾動在能量譜中擴(kuò)散得更廣。

實驗6:ViT對輸入擾動有更平滑的損失。

pYYBAGNPWyiAGQ4gAAB6s4_zFhM679.jpg

根據(jù)Park等人[Park 2022]的研究,與cnn相比ViT [Dosovitskiy 2020]在捕獲圖像高頻成分方面的效率較低。HAT [Bai 2022]是對現(xiàn)有transformer模型在頻率角度的影響進(jìn)行進(jìn)一步研究的結(jié)果。HAT使用RandAugment方法對輸入圖像的進(jìn)行高頻分量擾動。Wu等人[Wu 2022]研究了易受對抗實例影響的transformer模型的問題。這個問題(對對抗性噪聲的脆弱性)在cnn中是通過對抗性訓(xùn)練來處理的。但在transformer中,由于自注意計算的二次復(fù)雜度,對抗訓(xùn)練的計算成本很高。AGAT方法采用了一種有效的注意引導(dǎo)對抗機制,在對抗訓(xùn)練過程中使用注意引導(dǎo)下降策略去除每一層嵌入的確定性補丁。

隱私

預(yù)訓(xùn)練的transformer模型部署在云上?;谠频哪P筒渴鹬械囊粋€主要問題與數(shù)據(jù)中隱私問題有關(guān)。主要的隱私問題是用戶數(shù)據(jù)(如搜索歷史、醫(yī)療記錄和銀行賬戶)的暴露。目前的研究重點是在transformer模型推理中保護(hù)隱私。

論文[Huang 2020]介紹了TextHide,一種保護(hù)隱私的聯(lián)邦學(xué)習(xí)技術(shù),但這種方法適用于基于句子的任務(wù),如機器翻譯、情緒分析、轉(zhuǎn)述生成任務(wù)),而不是基于令牌的任務(wù)(如名稱實體識別和語義角色標(biāo)記)。

DP-finetune [Kerrigan 2020]差分隱私(DP)方法允許量化保護(hù)數(shù)據(jù)敏感性的程度。但是訓(xùn)練DP算法會降低模型的質(zhì)量,但是可以在私有數(shù)據(jù)集上使用公共基礎(chǔ)模型進(jìn)行調(diào)優(yōu)來部分解決。

Gentry等人[Gentry 2009]提出了一種用homomorphic encryption(HE)中的密文保護(hù)隱私的方法。但是transformer的模型中GELU [Hendrycks 2016]激活的計算復(fù)雜性,HE解決方案只支持加法和乘法。

論文[Chen 2022]在transformer中基于HE [Boemer 2019, Boemer 2020]的解上提出了一種通過級數(shù)逼近的The - x方法。the - x方法在SoftMax和GELU等層的幫助下,用一系列近似代替非多項式操作,去掉池器層,添加歸一化層,使用知識蒸餾技術(shù)。THE-X方法使用BERT-Tiny Model進(jìn)行評估[Wang 2018],并對CONLL2003 [Sang2003]任務(wù)進(jìn)行了基準(zhǔn)測試。

Li等人[Li 2022]使用差分隱私算法解決了性能下降和高計算開銷的問題。這樣可以使用更大的預(yù)訓(xùn)練語言模型來處理,也可以通過在中等語料庫上使用DP優(yōu)化進(jìn)行微調(diào)的對齊預(yù)訓(xùn)練過程來進(jìn)行微調(diào)。

近似性

論文[Ruthotto 2019]是最早為ResNets等深度神經(jīng)網(wǎng)絡(luò)提供基于偏微分方程(PDEs)的理論基礎(chǔ)的論文之一。更具體地說,作者證明了殘差cnn可以解釋為時空微分方程的離散化。在理論表征的基礎(chǔ)上,Ruthotto還提出了具有特殊性質(zhì)的雙曲和拋物線cnn等新模型。

殘差網(wǎng)絡(luò)也被解釋為常微分方程的歐拉離散化。但歐拉法求解精度不高,由于是一階方法,存在截斷誤差。ODE Transformers [Bei 2022]的作者使用了經(jīng)典的高階方法(Runge Kutta)來構(gòu)建Transformer塊。他們在三個序列生成任務(wù)上評估了ODE Transformers 。這些任務(wù)證明了ODE是有效的,包括抽象摘要、機器翻譯和語法糾正。在這個方向上的另一項努力是TransEvolve [Dutta 2021],它提供了一個Transformer架構(gòu),與ODE類似,但以多粒子動態(tài)系統(tǒng)為模型。

Transformers 已經(jīng)被證明相當(dāng)于通用計算引擎[Kevin 2022]。作者提出了一種稱為Frozen pretrain transformer (FPT)的結(jié)構(gòu),它可以在單一模態(tài)(如用于語言建模的文本數(shù)據(jù))上進(jìn)行訓(xùn)練,并識別跨模態(tài)有用的抽象(如特征表示)。他們采用GPT,只對自然語言數(shù)據(jù)進(jìn)行預(yù)訓(xùn)練,并對其輸入和輸出層以及層歸一化參數(shù)和位置嵌入進(jìn)行微調(diào)。這使得FPT在完成蛋白質(zhì)折疊預(yù)測、數(shù)值計算甚至圖像分類等各種任務(wù)時,可以與完全從零開始訓(xùn)練的transformer進(jìn)行比較。

模型壓縮

Touvron等人[Touvron 2021]提出了一種基于蒸餾技術(shù)(Deit)的高效transformer模型。它使用一種依賴于蒸餾令牌的師生策略,以確保學(xué)生通過注意力從老師那里學(xué)習(xí)。

Bao等人[Bao 2021]向預(yù)訓(xùn)練的VIT提出了一個遮蔽圖像模型任務(wù)。作者提出了一種基于自監(jiān)督的視覺表示模型,即來自圖像transformer的雙向編碼器表示(BEiT),它遵循了為自然語言處理領(lǐng)域開發(fā)的BERT [Kenton 2019]方法。在這種方法中,每個圖像被認(rèn)為是兩個視圖:一個是大小為16 x 16像素的圖像補丁,另一個是離散的可視標(biāo)記。將原始圖像標(biāo)記為可視標(biāo)記,并對部分圖像補丁進(jìn)行隨機掩碼,然后將其饋送給預(yù)訓(xùn)練的骨干transformer。訓(xùn)練BEiT后,模型可以針對下游任務(wù)進(jìn)行微調(diào)。

作者:Dr. Vijay Srinivas Agneeswaran

學(xué)習(xí) 人工智能技術(shù)與咨詢

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    永磁同步電機參數(shù)辨識研究綜述

    參數(shù)辨識的技術(shù)成果,再對 PMSM 辨識方法進(jìn)行歸納和比較,最后,揭示 PMSM 參數(shù)辨識過程中亟需關(guān)注的研究問題并 展望其未來的發(fā)展方向,旨在實現(xiàn) PMSM 系統(tǒng)的高效可靠運行。純分享帖,點擊附件查看全文*附件:永磁同步電機參數(shù)辨識研究綜述.pdf
    發(fā)表于 03-26 14:13

    在OpenVINO?工具套件的深度學(xué)習(xí)工作臺中無法導(dǎo)出INT8模型怎么解決?

    無法在 OpenVINO? 工具套件的深度學(xué)習(xí) (DL) 工作臺中導(dǎo)出 INT8 模型
    發(fā)表于 03-06 07:54

    如何排除深度學(xué)習(xí)工作臺上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?450次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1719次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1117次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2698次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,共同進(jìn)步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問題(一) Q:FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?現(xiàn)在用FPGA做深度學(xué)習(xí)加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    深度學(xué)習(xí)中的時間序列分類方法

    的發(fā)展,基于深度學(xué)習(xí)的TSC方法逐漸展現(xiàn)出其強大的自動特征提取和分類能力。本文將從多個角度對深度學(xué)習(xí)在時間序列分類中的應(yīng)用進(jìn)行綜述,探討常用
    的頭像 發(fā)表于 07-09 15:54 ?1951次閱讀

    深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法綜述

    深度學(xué)習(xí)作為機器學(xué)習(xí)領(lǐng)域的一個重要分支,近年來在多個領(lǐng)域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領(lǐng)域。然而,深度
    的頭像 發(fā)表于 07-09 10:50 ?1567次閱讀

    深度學(xué)習(xí)在視覺檢測中的應(yīng)用

    能力,還使得機器能夠模仿人類的某些智能行為,如識別文字、圖像和聲音等。深度學(xué)習(xí)的引入,極大地推動了人工智能技術(shù)的發(fā)展,特別是在圖像識別、自然語言處理、語音識別等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 07-08 10:27 ?1189次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    深度學(xué)習(xí)和自然語言處理(NLP)是計算機科學(xué)領(lǐng)域中兩個非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學(xué)習(xí)與NLP的區(qū)別。 深度
    的頭像 發(fā)表于 07-05 09:47 ?1518次閱讀

    深度學(xué)習(xí)常用的Python庫

    深度學(xué)習(xí)作為人工智能的一個重要分支,通過模擬人類大腦中的神經(jīng)網(wǎng)絡(luò)來解決復(fù)雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度學(xué)習(xí)研究和應(yīng)用的首選工具。
    的頭像 發(fā)表于 07-03 16:04 ?1077次閱讀

    深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個領(lǐng)域取得了顯著的應(yīng)用成果。從圖像識別、語音識別
    的頭像 發(fā)表于 07-02 18:19 ?1358次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機器學(xué)習(xí)的對比

    在人工智能的浪潮中,機器學(xué)習(xí)深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機器學(xué)習(xí)的范疇,但
    的頭像 發(fā)表于 07-01 11:40 ?2237次閱讀