女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

用生成模型來做圖像恢復的介紹和回顧

新機器視覺 ? 來源:AI公園 ? 作者:Chu-Tak Li ? 2021-06-10 15:56 ? 次閱讀

導讀

本文給出了圖像恢復的一般性框架,編解碼器 + GAN,后面的圖像復原基本都是這個框架。

本文會介紹圖像修復的目的,它的應用,等等。然后,我們將深入研究文獻中關于圖像修復的第一個生成模型(即第一個基于GAN的修復算法,上下文編碼器)。

目標

很簡單的!我們想要填補圖像中缺失的部分。

應用

移除圖像中不需要的部分(即目標移除)

修復損壞的圖像(可以擴展到修復電影)

很多其他應用!

術語

給出一個有一些缺失區域的圖像,我們定義

缺失像素/生成像素/空洞像素:待填充區域的像素。

有效像素/ground truth像素:和缺失像素含義相反。需要保留這些像素,這些像素可以幫助我們填補缺失的區域。

傳統方法

給出一個有一些缺失區域的圖像,最典型的傳統方法填充缺失區域是復制粘貼。

主要思想是從圖像本身或一個包含數百萬張圖像的大數據集中尋找最相似的圖像補丁,然后將它們粘貼到缺失的區域。

然而,搜索算法可能是耗時的,它涉及到手工設計距離的度量方法。在通用化和效率方面仍有改進的空間。

數據驅動的基于深度學習的方法

由于卷積神經網絡(Convolutional Neural Networks, CNNs)在圖像處理方面的成功,很多人開始將CNNs應用到自己的任務中。基于數據驅動的深度學習方法的強大之處在于,如果我們有足夠的訓練數據,我們就可以解決我們的問題。

如上所述,圖像修復就是將圖像中缺失的部分補上。這意味著我們想要生成一些不存在或沒有答案的東西。因此,所有基于深度學習的修復算法都使用生成對抗網絡(GANs)來產生視覺上吸引人的結果。為什么視覺上吸引人呢?由于沒有模型來回答生成的問題,人們更喜歡有良好視覺質量的結果,這是相當主觀的!

對于那些可能不知道GANs的讀者,我推薦你先去了解一下。這里以圖像修復為例,簡單地說,典型的GAN由一個生成器和一個鑒別器組成。生成器負責填補圖像中缺失的部分,鑒別器負責區分已填充圖像和真實圖像。請注意,真實的圖像是處于良好狀態的圖像(即沒有缺失的部分)。我們將隨機地將填充的圖像或真實的圖像輸入識別器來欺騙它。最終,如果鑒別器不能判斷圖像是被生成器填充的還是真實的圖像,生成器就能以良好的視覺質量填充缺失的部分!

第一個基于GAN的修復方法:上下文編碼器

在對image inpainting做了簡單的介紹之后,我希望你至少知道什么是image inpainting, GANs(一種生成模型)是inpainting領域常用的一種。現在,我們將深入研究本系列的第一篇論文。

Intention

作者想訓練一個CNN來預測圖像中缺失的像素。眾所周知,典型的CNNs(例如LeNet手寫數字識別和AlexNet圖像分類)包含許多的卷積層來提取特征,從簡單的結構特征到高級的語義特征(即早期層簡單的特征,比如邊緣,角點,到后面的層的更復雜的特征模式)。對于更復雜的功能模式,作者想利用學到的高層語義特征(也稱為隱藏特征)來幫助填充缺失的區域。

此外,為修復而學習的特征需要對圖像進行更深層次的語義理解。因此,學習到的特征對于其他任務也很有用,比如分類、檢測和語義分割。

背景

在此,我想為讀者提供一些背景信息,

Autoencoders:這是一種通常用于重建任務的CNN結構。由于其形狀,也有人稱之為沙漏結構模型。對于這個結構,輸出大小與輸入大小相同,我們實際上有兩個部分,一個是編碼器,另一個是解碼器。

編碼器部分用于特征編碼,針對輸入得到緊湊潛在的特征表示,而解碼器部分則對潛在特征表示進行解碼。我們通常把中間層稱為低維的“瓶頸”層,或者簡單地稱之為“瓶頸”,因此整個結構看起來就像一個沙漏。

讓我們想象一下,我們將一幅完好無損的圖像輸入到這個自動編碼器中。在這種情況下,我們期望輸出應該與輸入完全相同。這意味著一個完美的重建。如果可能的話,“瓶頸”是輸入的一個完美的緊湊潛在特征表示。

更具體地說,我們可以使用更少的數字來表示輸入(即更有效,它與降維技術有關)。因此,這個“瓶頸”包含了幾乎所有的輸入信息(可能包括高級語義特征),我們可以使用它來重構輸入。

上下文編碼器進行圖像生成

首先,輸入的是mask圖像(即有中心缺失的圖像)。輸入編碼器以獲得編碼后的特征。然后,本文的主要貢獻是在編碼特征和解碼特征之間放置通道全連接層,以獲得更好的語義特征(即“瓶頸”)。最后,解碼器利用“瓶頸”特征重建缺失的部分。讓我們來看看他們的網絡內部。

編碼器

編碼器使用AlexNet結構,他們用隨機初始化權值從頭開始訓練他們的網絡。

與原始的AlexNet架構和圖2所示的自動編碼器相比,主要的區別是中間的通道全連接層。如果網絡中只有卷積層,則無法利用特征圖上距離很遠的空間位置的特征。為了解決這個問題,我們可以使用全連接層,即當前層的每個神經元的值依賴于上一層的所有神經元的值。然而,全連接層會引入許多參數,8192x8192=67.1M,這甚至在GPU上也很難訓練,作者提出了通道全連接層來解決這個問題。

通道全連接層

實際上,通道全連接層非常簡單。我們只是完全獨立地連接每個通道而不是所有的通道。例如,我們有m個大小為n x n的特征映射。如果使用標準的全連接層,我們會有m2n?個參數,對于通道級的全連接層,我們只有mn?個參數。因此,我們可以在距離很遠的空間位置上捕獲特征,而不需要添加那么多額外的參數。

解碼器

對于解碼器來說,這只是編碼過程的反向。我們可以使用一系列的轉置卷積來獲得期望大小的重建圖像。

損失函數

本文使用的損失函數由兩項組成。第一項是重建損失(L2損失),它側重于像素級的重建精度(即PSNR方向的損失),但總是會導致圖像模糊。第二個是對抗損失,它通常用于GANs。它鼓勵真實圖像和填充圖像之間數據分布更接近。

對于那些對損失函數感興趣的讀者,我強烈推薦你們閱讀這篇論文中的方程。在這里,我只是口頭描述每個損失項。

04b0fa4a-c9b8-11eb-9e57-12bb97331649.png

重建損失(L2損失),M表示缺失的區域(1表示缺失區域,0表示有效像素),F是生成器

L2損失:計算生成的像素與對應ground truth像素之間的L2距離(歐幾里得距離)。只考慮缺失區域。

04cbfdd6-c9b8-11eb-9e57-12bb97331649.png

對抗損失,D是鑒別器。我們希望訓練出一種能夠區分填充圖像和真實圖像的鑒別器

對抗損失:對抗鑒別器的結構如圖4所示。鑒別器的輸出是一個二進制值0或1。如果輸入是真實圖像,則為1,如果輸入是填充圖像,則為0。

04e52932-c9b8-11eb-9e57-12bb97331649.png

聯合損失,Lambda_rec為0.999,Lambda_adv為0.001

使用隨機梯度下降(SGD),Adam優化器交替訓練生成器和鑒別器。

實驗結果

評估使用了兩個數據集,即Paris Street View和ImageNet。

作者首先展示了修復結果,然后他們還表明,作為預訓練步驟,學習到的特征可以遷移到其他任務中。

語義修復

作者與傳統的最近鄰修復算法進行了比較。顯然,該方法優于最近鄰修復方法。

我們可以看到L2損失傾向于給出模糊的圖像(第二列)。L2 +對抗性的損失給更清晰的填充圖像。對于NN-Inpainting,他們只是復制和粘貼最相似的圖像補丁到缺失的區域。

特征學習

為了顯示他們學習到的特征的有用性,作者嘗試編碼不同的圖像patch,并根據編碼的特征得到最相似的patch。在圖7中。作者將其與傳統的HOG和典型的AlexNet進行了比較。它們實現了與AlexNet類似的表現,但AlexNet是在一百萬張標有數據集的圖像上預訓練的。

如表2所示,在ImageNet上預訓練過的模型具有最好的性能,但需要昂貴的標簽。在該方法中,上下文是用于訓練模型的監督。這就是他們所謂的通過修復圖像來學習特征。很明顯,它們學習到的特征表示與其他借助輔助監督訓練的模型相當,甚至更好。

總結

所提出的上下文編碼器訓練可以在上下文的條件下生成圖像。在語義修復方面達到了最先進的性能。

學習到的特征表示也有助于其他任務,如分類,檢測和語義分割。

要點

我想在這里強調一些要點。

對于圖像修復,我們必須使用來自有效像素的“提示”來幫助填充缺失的像素。“上下文”一詞是指對整個圖像本身的理解。

本文的主要貢獻是通道全連接層。其實,理解這一層并不難。對我來說,它是Non-Local Neural Networks或Self-Attention的早期版本/簡化版本。主要的一點是,前一層的所有特征位置對當前層的每個特征位置都有貢獻。從這個角度來看,我們對整個圖像的語義理解會更加深入。這個概念在后面的文章中被廣泛采用!

所有后來的修復論文都遵循了GAN-based結構(即編碼器-解碼器結構)。人們的目標是具有良好視覺質量的充滿圖像。

英文原文:https://medium.com/analytics-vidhya/introduction-to-generative-models-for-image-inpainting-and-review-context-encoders-13e48df30244

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 解碼器
    +關注

    關注

    9

    文章

    1163

    瀏覽量

    41704
  • 編碼器
    +關注

    關注

    45

    文章

    3775

    瀏覽量

    137161
  • GaN
    GaN
    +關注

    關注

    19

    文章

    2177

    瀏覽量

    76169
  • cnn
    cnn
    +關注

    關注

    3

    文章

    354

    瀏覽量

    22636

原文標題:用生成模型來做圖像恢復的介紹和回顧:上下文編碼器

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    利用NVIDIA 3D引導生成式AI Blueprint控制圖像生成

    AI 賦能的圖像生成技術突飛猛進,從早期模型生成手指過多的人類圖像,到現在能創造出令人驚嘆的逼真視覺效果。即使取得了如此飛躍,仍然存在一個
    的頭像 發表于 06-05 09:24 ?190次閱讀

    Gemini API集成Google圖像生成模型Imagen 3

    開發者現在可以通過 Gemini API 訪問 Google 最先進的圖像生成模型 Imagen 3。該模型最初僅對付費用戶開放,不久后也將面向免費用戶推出。
    的頭像 發表于 05-14 16:53 ?299次閱讀

    如何使用離線工具od SPSDK生成完整圖像

    SDSDK)會生成一個缺少前 4KB 的文件。 這些將由 flashloader 直接在目標上填充,使用將要傳達給它的參數,對吧? 我需要離線工作。我需要生成一個 “完整圖像”,但無法訪問目標。 我該怎么
    發表于 03-28 06:51

    OptiSystem應用:真實圖像在光纖中傳輸后的恢復

    經過50km的光纖系統進行傳輸,光電轉化并濾波之后,我們數據恢復器件(Data Recovery)恢復二進制信號,再用圖像重構組件(Im
    發表于 03-03 09:26

    企業AI模型托管怎么

    當下,越來越多的企業選擇將AI模型托管給專業的第三方平臺,以實現高效、靈活和安全的模型運行。下面,AI部落小編為您介紹企業AI模型托管是怎么
    的頭像 發表于 01-15 10:10 ?347次閱讀

    AN-715::走近IBIS模型:什么是IBIS模型?它們是如何生成的?

    電子發燒友網站提供《AN-715::走近IBIS模型:什么是IBIS模型?它們是如何生成的?.pdf》資料免費下載
    發表于 01-13 14:21 ?0次下載
    AN-715::走近IBIS<b class='flag-5'>模型</b>:什么是IBIS<b class='flag-5'>模型</b>?它們是如何<b class='flag-5'>生成</b>的?

    借助谷歌Gemini和Imagen模型生成高質量圖像

    在快速發展的生成式 AI 領域,結合不同模型的優勢可以帶來顯著的成果。通過利用谷歌的 Gemini 模型制作詳細且富有創意的提示,然后使用 Imagen 3
    的頭像 發表于 01-03 10:38 ?813次閱讀
    借助谷歌Gemini和Imagen<b class='flag-5'>模型</b><b class='flag-5'>生成</b>高質量<b class='flag-5'>圖像</b>

    Google兩款先進生成式AI模型登陸Vertex AI平臺

    新的 AI 模型,包括最先進的視頻生成模型Veo以及最高品質的圖像生成模型Imagen 3。近日
    的頭像 發表于 12-30 09:56 ?534次閱讀

    OpenAI暫不推出Sora視頻生成模型API

    OpenAI近日宣布,目前暫無推出其視頻生成模型Sora的應用程序接口(API)的計劃。Sora模型能夠基于文本和圖像生成視頻,引發了廣泛關
    的頭像 發表于 12-20 14:23 ?480次閱讀

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    問題,當步幅為2時,添加了深度卷積和逐點卷積整合不同的信道信息(圖 a)。GhostNet 的作者提出了一種新的 Ghost 模塊,該模塊可以更少的參數生成更多的特征圖,以提高網絡的學習能力。在步幅
    發表于 12-19 14:33

    字節發布SeedEdit圖像編輯模型

    近日,字節跳動公司在其豆包大模型團隊的官方網站上,正式公布了其最新的通用圖像編輯模型——SeedEdit。這款創新性的圖像編輯模型,為用戶提
    的頭像 發表于 11-12 10:43 ?662次閱讀

    Meta發布Imagine Yourself AI模型,重塑個性化圖像生成未來

    Meta公司近日在人工智能領域邁出了重要一步,隆重推出了其創新之作——“Imagine Yourself”AI模型,這一突破性技術為個性化圖像生成領域帶來了前所未有的變革。在社交媒體與虛擬現實技術
    的頭像 發表于 08-26 10:59 ?929次閱讀

    經典卷積網絡模型介紹

    經典卷積網絡模型在深度學習領域,尤其是在計算機視覺任務中,扮演著舉足輕重的角色。這些模型通過不斷演進和創新,推動了圖像處理、目標檢測、圖像生成
    的頭像 發表于 07-11 11:45 ?1073次閱讀

    如何用C++創建簡單的生成式AI模型

    生成式AI(Generative AI)是一種人工智能技術,它通過機器學習模型和深度學習技術,從大量歷史數據中學習對象的特征和規律,從而能夠生成全新的、完全原創的內容,包括文本、圖像
    的頭像 發表于 07-05 17:53 ?1581次閱讀

    Runway發布Gen-3 Alpha視頻生成模型

    專為電影和圖像內容創作者提供生成式AI工具的Runway公司近日宣布,其最新的Gen-3 Alpha視頻生成模型已經正式問世。這款模型在多方
    的頭像 發表于 06-19 09:25 ?803次閱讀