女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

為什么選擇氮化鎵?淺談氮化鎵在數(shù)據中心的應用

電子設計 ? 來源:powerelectronicsnews ? 作者:Stephen Oliver ? 2021-03-21 12:15 ? 次閱讀

CPUGPU,內存,網絡等方面的數(shù)據處理以及從高壓AC一直進行電源轉換的角度來看,“硅芯片”一直是數(shù)據革命的支柱,實際上是推動這一革命的推動力。降至微處理器所需的1V。問題在于,作為功率轉換平臺的硅已經達到其物理極限,現(xiàn)在該是一種新的半導體-氮化鎵(GaN)取代了的時候了。全球范圍內的Si-GaN數(shù)據中心升級將減少30-40%的能量損失,這意味著到2030年將節(jié)省超過100 TWh和125噸的CO2排放量。

數(shù)據中心整合–超大規(guī)模

隨著互聯(lián)網協(xié)議(IP)流量的持續(xù)增長,規(guī)模經濟意味著數(shù)據中心正在整合為“超大規(guī)模”運營(圖1)。這些設施是從頭開始構建的,因此與舊式或翻新的電源解決方案無關。

圖1:年度IP流量增加和“超大規(guī)模”數(shù)據中心的崛起(思科)

服務器和電信架構的整合– HVDC

讓我們看一下數(shù)據中心的架構,以及GaN可以在其中減少損耗,從而節(jié)省金錢和自然資源的架構。對于服務器,這通常是空調房間中的AC到12 VDC,而對于傳統(tǒng)的低功能(例如,僅語音)電信系統(tǒng),這是遠程潮濕的“蜂窩塔”,需要AC進行“防腐蝕” ,負參考48 VDC用于備用電池。隨著通信量的增加,大多數(shù)電信系統(tǒng)已經超過了原來的“僅蜂窩塔式”結構,現(xiàn)在處于類似的“干凈”環(huán)境中,因此48V可以是正參考電壓,并且可以使用類似的系統(tǒng)組件作為服務器。由于預測顯示從2015年到2025年僅10年內數(shù)據流量將增長30倍,因此這一趨勢有望繼續(xù)。在合并方法中,我們還可以受益于從交流配電過渡到400 V直流配電的方法,如圖2所示。 。

圖2:將服務器AC和電信48 VDC架構整合到400 VDC HVDC系統(tǒng)中。[NTT]

為什么選擇氮化鎵?

鎵(Ga,原子序數(shù)31)和氮(N,7)結合在一起成為半導體材料-氮化鎵(GaN)-像硅(Si,14)一樣。GaN是一種“寬帶隙”材料,因為它提供的電子帶隙比硅大3倍,這意味著它可以用大得多的芯片來處理大電場。憑借更小的晶體管和更短的電流路徑,可實現(xiàn)超低電阻電容,同時實現(xiàn)高達100倍的更快開關速度。低電阻和低電容可轉化為更高的電源轉換效率,因此可將更多的電源傳遞給IT負載。這意味著每瓦更多的功能或更多的“操作”,而不是將能量消耗為熱量,從而使系統(tǒng)變暖并產生更多的制冷(空調)工作量。此外,高速(頻率)切換意味著尺寸更小,

GaN作為功率元件構建塊的實用且高性能的實現(xiàn)方式處于集成解決方案中,即Navitas Semiconductor的GaNFast電源IC。此處,GaN電源(FET),驅動,控制和保護高度集成,以創(chuàng)建易于使用的高性能,高頻(2 MHz),“數(shù)字輸入,輸出”構建模塊。GaN功率IC是功率電子技術第二次革命的催化劑。

圖3:電力電子技術的兩次革命,伴隨著新的開關材料,集成,新的磁學和新的拓撲結構的“完美風暴”,從學術界向工業(yè)界過渡。每次旋轉的結果顯著提高了開關頻率,效率,功率密度并大大降低了成本。2014年Navitas半導體公司的加入標志著GaN功率IC的推出。[Navitas]

“第二次革命”開始于移動快速充電器市場,售后配件公司如Anker,AUKEY和Belkin提供了30至100W的單端口和多端口GaN基充電器。聯(lián)想,戴爾,小米,OPPO和華碩等一級OEM隨后發(fā)布了功率高達300W的智能手機和筆記本電腦充電器。現(xiàn)在,已經有超過900萬個GaNFast電源IC出現(xiàn)了零現(xiàn)場故障和超過170億個設備現(xiàn)場小時。可靠性數(shù)據是保守的“關鍵任務”數(shù)據中心市場采用氮化鎵的關鍵基礎。

編輯:hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電源轉換器
    +關注

    關注

    4

    文章

    352

    瀏覽量

    35036
  • 氮化鎵
    +關注

    關注

    61

    文章

    1762

    瀏覽量

    117496
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    氮化電源IC U8765產品概述

    氮化憑借高頻高效特性,具備了體積小、功率高、發(fā)熱低等優(yōu)勢,但小型化雖好,散熱才是硬道理,選氮化電源ic得看準散熱設計。今天就給小伙伴們推薦一款散熱性能優(yōu)越、耐壓700V的
    的頭像 發(fā)表于 04-29 18:12 ?227次閱讀

    330W氮化方案,可過EMC

    氮化
    深圳市三佛科技
    發(fā)布于 :2025年04月01日 11:31:39

    CE65H110DNDI 能華330W 氮化方案,可過EMC

    深圳市三佛科技有限公司供應CE65H110DNDI 能華330W 氮化方案,可過EMC,原裝現(xiàn)貨 CE65H110DNDl系列650v、110mΩ氮化(GaN)FET是常關器件
    發(fā)表于 03-31 14:26

    氮化系統(tǒng) (GaN Systems) E-HEMTs 的EZDriveTM方案

    氮化系統(tǒng) (GaN Systems) E-HEMTs 的EZDriveTM方案
    的頭像 發(fā)表于 03-13 16:33 ?1657次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>系統(tǒng) (GaN Systems) E-HEMTs 的EZDriveTM方案

    氮化硼散熱材料大幅度提升氮化快充效能

    什么是氮化(GaN)充電頭?氮化充電頭是一種采用氮化(GalliumNitride,GaN
    的頭像 發(fā)表于 02-26 04:26 ?458次閱讀
    <b class='flag-5'>氮化</b>硼散熱材料大幅度提升<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充效能

    垂直氮化器件的最新進展和可靠性挑戰(zhàn)

    過去兩年中,氮化雖然發(fā)展迅速,但似乎已經遇到了瓶頸。與此同時,不少垂直氮化的初創(chuàng)企業(yè)倒閉或者賣盤,這引發(fā)大家對垂直氮化
    的頭像 發(fā)表于 02-17 14:27 ?1014次閱讀
    垂直<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>器件的最新進展和可靠性挑戰(zhàn)

    氮化充電器和普通充電器有啥區(qū)別?

    相信最近關心手機行業(yè)的朋友們都有注意到“氮化(GaN)”,這個名詞在近期出現(xiàn)比較頻繁。特別是隨著小米發(fā)布旗下首款65W氮化快充充電器之后,“氮化
    發(fā)表于 01-15 16:41

    25W氮化電源芯片U8722BAS的主要特征

    在消費類快充電源市場中,氮化有著廣泛的應用,如今已有數(shù)十家主流電源廠商開辟了氮化快充產品線,推出的氮化
    的頭像 發(fā)表于 12-24 16:06 ?748次閱讀

    合作案例 | 一文解開遠山氮化功率器件耐高壓的秘密

    引言氮化(GaN),作為一種具有獨特物理和化學性質的半導體材料,近年來在電子領域大放異彩,其制成的氮化功率芯片在功率轉換效率、開關速度及耐高溫等方面優(yōu)勢盡顯,在5G通信、新能源汽車
    的頭像 發(fā)表于 11-12 15:58 ?686次閱讀
    合作案例 | 一文解開遠山<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>功率器件耐高壓的秘密

    遠山半導體氮化功率器件的耐高壓測試

    氮化(GaN),作為一種具有獨特物理和化學性質的半導體材料,近年來在電子領域大放異彩,其制成的氮化功率芯片在功率轉換效率、開關速度及耐高溫等方面優(yōu)勢盡顯,在5G通信、新能源汽車、
    的頭像 發(fā)表于 10-29 16:23 ?942次閱讀
    遠山半導體<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>功率器件的耐高壓測試

    碳化硅 (SiC) 與氮化 (GaN)應用 | 氮化硼高導熱絕緣片

    SiC和GaN被稱為“寬帶隙半導體”(WBG)。由于使用的生產工藝,WBG設備顯示出以下優(yōu)點:1.寬帶隙半導體氮化(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化的帶隙
    的頭像 發(fā)表于 09-16 08:02 ?1247次閱讀
    碳化硅 (SiC) 與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b> (GaN)應用  | <b class='flag-5'>氮化</b>硼高導熱絕緣片

    氮化和砷化哪個先進

    氮化(GaN)和砷化(GaAs)都是半導體材料領域的重要成員,它們在各自的應用領域中都展現(xiàn)出了卓越的性能。然而,要判斷哪個更先進,并不是一個簡單的二元對立問題,因為它們的先進性取決于具體的應用場
    的頭像 發(fā)表于 09-02 11:37 ?4816次閱讀

    芯干線科技CEO說氮化

    氮化是一種由氮和結合而來的化合物,其中氮在元素周期表排序第7位,排序第31位,7月31日世界氮化
    的頭像 發(fā)表于 08-21 10:03 ?998次閱讀

    氮化(GaN)的最新技術進展

    本文要點氮化是一種晶體半導體,能夠承受更高的電壓。氮化器件的開關速度更快、熱導率更高、導通電阻更低且擊穿強度更高。氮化
    的頭像 發(fā)表于 07-06 08:13 ?1398次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(GaN)的最新技術進展

    淺談光耦與氮化快充技術的創(chuàng)新融合

    氮化快充技術主要通過將氮化功率器件應用于充電器、電源適配器等充電設備中,以提高充電效率和充電速度。光耦技術作為一種能夠將電信號轉換成光信號并實現(xiàn)電氣與光學之間隔離的器件,為
    的頭像 發(fā)表于 06-26 11:15 ?733次閱讀
    <b class='flag-5'>淺談</b>光耦與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充技術的創(chuàng)新融合