女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

垂直氮化鎵器件的最新進展和可靠性挑戰

芯長征科技 ? 來源:半導體行業觀察 ? 2025-02-17 14:27 ? 次閱讀

以下文章來源于半導體行業觀察,作者IEDM

過去兩年中,氮化鎵雖然發展迅速,但似乎已經遇到了瓶頸。與此同時,不少垂直氮化鎵的初創企業倒閉或者賣盤,這引發大家對垂直氮化鎵未來的擔憂。為此,在本文中,我們先對氮化鎵未來的發展進行分析,并討論了垂直氮化鎵器件開發的最新進展以及相關的可靠性挑戰。

氮化鎵的未來:

高電壓、高電流和雙向性

氮化鎵功率器件正在滲透并提高包括快速充電器和電源在內的多種消費類應用的效率。大眾市場對此反應熱烈,氮化鎵的應用在手機和筆記本電腦等便攜設備(功率范圍在 65 到 250W 之間)的快速充電器以及高達 3.2 kW 的電源中蓬勃發展。

隨著氮化鎵開始在低功率應用中部署并證明其在現場的可靠性,我們現在看到了氮化鎵滲透到高功率應用的機會,這將對經濟、生態和社會產生更實質性的影響。強大的機遇存在于能量收集、汽車、數據中心人工智能領域。為了實現這一目標,必須對重要元素進行完善。為了提供高功率,氮化鎵必須處理高電壓和高電流,不僅要高效,還要安全、可靠且低成本。氮化鎵擁有所有成功的特性。

在本文中,我們將介紹突破性的賦能技術:1200V 額定值、大外延氮化鎵器件(電流額定值高達 170A,單芯片功率高達 14kW 的記錄)、高達 5μs 的短路能力(用于故障安全操作)以及用于新型、更緊湊電路拓撲的單片雙向開關,從而實現更輕、更小、更高效、更可靠的轉換系統。

1高壓氮化鎵 (1200V)

氮化鎵 HEMT 具有獨特的優勢,可以服務于商業上重要的寬電壓范圍,從 100V 到 1200V,并且相對于硅 IGBT、硅 CoolMOS 和碳化硅晶體管具有競爭優勢。直到幾年前,1200V 似乎在商業上使用氮化鎵是不可行的。但在 2020 年初,低成本、高性能的 1200V 氮化鎵解決方案出現在人們視線中。Transphorm 展示了1200V氮化鎵,它使用在藍寶石(一種具有出色電絕緣性的材料)上沉積的材料構建的橫向 HEMT,以消除漏極和襯底之間的擊穿,并阻斷 1200V 及更高的電壓。橫向 1200V 氮化鎵 HEMT 保留了橫向 HEMT 的所有優點:高遷移率(降低存儲電荷)、大面積(提高熱導率)和低制造成本。用藍寶石代替硅可以保持低產品成本和高熱性能。在前道制造過程中,藍寶石上 III-N 緩沖層的厚度可以減少 60% 以上,從而降低外延成本,同時保持良好的晶體質量和高電絕緣性,這不僅在 150 毫米基板上,而且在 200 毫米基板上也是如此。在后道工藝中,藍寶石可以減薄到 150-200 微米,以匹配硅的熱導率。藍寶石已經是氮化鎵 LED 的首選襯底,擁有大量的專業知識和工業大批量生態系統。

在這項工作中,我們展示了采用藍寶石襯底上高電子遷移率晶體管(HEMT)制造的 1200 V GaN 開關的結果(圖 1)。使用封裝在 TO-247 封裝內的 70 mΩ 藍寶石襯底 GaN 2 芯片常關型 GaN FET,我們獲得了 900:450V 降壓轉換器在 50 kHz 下大于 99% 的效率。該器件表現出出色的開關品質因數,Ron?Qg = 0.9 Ω?nC,Ron?Qrr = 11 Ω?nC。這些結果表明,經過優化的藍寶石襯底 GaN 技術可以成為 1200V 功率器件市場的極具競爭力的平臺。目前正在進行重復性和認證任務,以期盡快推出中高功率產品。

wKgZPGey1vKAbyp1AAOY_o463V8569.jpg

圖 1. 基于低成本、大直徑、絕緣藍寶石襯底的 1200V 氮化鎵 HEMT 級聯結構

2高電流氮化鎵(170A)

如今,氮化鎵解決方案應用于功率介于 65W 和 3.2kW 之間的低功率和中功率應用,處理的電流僅為幾安培到幾十安培,芯片面積為幾百平方微米。然而,沒有任何物理障礙阻止氮化鎵解決方案處理數百安培的電流,并應用于 10kW 甚至 100kW 以上的高功率應用。在這項工作中,我們展示了高電流氮化鎵原型的新數據,其導通電阻為 10mOhm,額定直流電流超過 170A。該芯片面積為數十平方毫米,并封裝在傳統的 TO-247-3L 封裝中。

硬開關波形和升壓轉換效率如圖 2 所示。該器件的開關速度達到 50V/ns 和 4A/ns,從而實現高功率和高頻開關。在 50kHz、硬開關模式下工作的 240V:400V 升壓轉換器中,效率峰值在 4kW 時達到 99.3%,并平穩地降至 14kW 的功率??梢钥闯?,在 14kW 時,結溫僅為 120℃,表明還有更大的裕量可以實現更高的功率。如此出色性能的原因是快速的開關速度,它最大限度地減少了開關損耗;D 模式氮化鎵與低壓硅 MOSFET 級聯配置的低動態 Ron(小于 10%);以及電阻的低溫度系數(150℃ 和 25℃ 之間小于 1.8 倍,與 SiC Trench MOSFET 技術相似),這些共同促成了運行中的低傳導損耗。雖然本文展示的是 TO-247-3L 封裝,但本文提出的 10mOhm 芯片不僅可以組裝在帶有 Kelvin 源和更低漏感值的表面貼裝封裝中,還可以作為裸芯片組裝到工業或汽車模塊中。最近的研究表明,氮化鎵級聯器件的并聯已成功實現高達 500A 的電流。

wKgZO2ey1vOABwNlAALZE-SR5_8337.jpg

圖2:單個 10 mOhm 氮化鎵芯片的開關波形和效率曲線,展示了創紀錄的 99.3% 高效率和 14 kW 輸出功率,且仍有提升空間,因為結溫僅為 120℃,遠低于額定值 175℃。

3短路能力(5μS)

電機驅動應用中,氮化鎵(GaN)器件不僅要通過嚴格的 JEDEC 或 AEC-Q0101 認證,還必須能夠承受由過載、直通、固件錯誤、電流浪涌和/或外部故障條件引起的短路事件。2021 年,Transphorm 展示了一項獲得專利的 GaN 技術,在 50 毫歐器件上實現了高達 3 微秒的短路耐受時間(SCWT)。今年,我們帶來了重大改進,展示了一款 15 毫歐器件,其短路耐受時間延長至 5 微秒,能夠進行高功率操作(12 千瓦)。該器件采用 TO-247 封裝,額定電壓為 650 伏,額定直流電流為 145 安。其峰值效率達到 99.2%,最大輸出功率為 12 千瓦。在 400 伏的漏極偏置下,其短路耐受時間為 5 微秒(圖 3),并且通過了 1000 小時 175 攝氏度高溫反向偏置應力測試。這些數據表明了 GaN 的適應性,打破了其不具備短路能力的“神話”。作為參考,現代柵極驅動器的保護響應時間約為 1 微秒,確保有足夠的時間檢測故障并安全關閉系統,而不會導致器件損壞

wKgZPGey1vOAH-WIAAOfC0iov0o064.jpg

圖 3. 獲得專利的氮化鎵技術,可實現高達 5 微秒的短路耐受時間,從而在電機驅動逆變器中實現故障安全運行。

4單片雙向開關

由于其橫向結構,氮化鎵器件非常適合單片集成??梢詫蓚€反串聯的晶體管單片集成在一起,形成所謂的“雙向開關”(圖 4)。雙向開關具有兩個由兩個相對的柵極控制的相對的源極,并且可以沿兩個方向承載電流,并在兩個極性上阻斷電壓。這種器件架構在氮化鎵中以其簡單性而獨有,對于需要功率器件承受正負交流波瓣的交流前端來說,具有重要意義。

wKgZO2ey1vOAVGKRAAFXT1AV1o8761.jpg

圖 4. 單片氮化鎵雙向開關,具有共漏極和共享漂移區,以實現更小的占位面積、更高的品質因數和更少的零件數量。

氮化鎵雙向開關支持諸如隔離矩陣雙有源橋(圖 5 左)、非隔離 T 型中性點鉗位 (T-NPC,圖 5 右) 等拓撲結構,以及更多拓撲結構。這些拓撲結構允許在單級中進行 AC/DC 或 DC/AC 轉換——無需體積龐大且昂貴的 DC-link 電容器——從而實現更輕、更小、更高效、更可靠的電源系統。應用非常廣泛,包括電源和電池充電器、太陽能逆變器和電機驅動器。

wKgZO2ey1vOAFkppAAFvktSC6VY112.jpg

圖 5. 使用氮化鎵雙向開關 (BDS) 的拓撲結構,包括隔離式矩陣雙有源橋和非隔離式 T 型中性點鉗位。這些拓撲結構允許單級 AC/DC 轉換,具有雙向功能和更少的零件數量。由于缺少 DC-link 電容器,因此轉換系統更輕、更小,并且由于轉換級數更少,效率更高、可靠性更高。

在這項工作中,我們展示了一種氮化鎵雙向技術,其中單片集成的 D 模式雙向氮化鎵 HEMT 與兩個低壓硅 MOSFET 以級聯配置連接,以實現常關操作。HEMT 的單片集成允許共享高壓漂移區,與兩個分立的氮化鎵開關相比,芯片尺寸減小了 40%。低壓硅 MOSFET 允許高閾值電壓 (4V)、高柵極裕量 (+20V)、高可靠性以及高抗噪聲和寄生導通能力。雙向級聯器件采用堆疊芯片技術集成,以最大限度地減少占位面積以及互連電阻和電感(圖 6)。該解決方案封裝在帶隔離焊片的單個 TO-247 封裝中。如圖 4 所示,D 模式氮化鎵的漂移區在晶體管的兩側之間共享,從而顯著提高了 Ron x Qg 和 Ron x Qoss 的品質因數。導通電阻為 70 mΩ,該器件具有出色的雙向電流傳導和電壓阻斷能力,具有對稱的電流-電壓和電容-電壓特性。Ron?Qg 比連接在反串聯中的最先進的分立式碳化硅 MOSFET 低 80%,從而降低了開關損耗,降低了成本,減少了零件數量,并減小了占位面積。

wKgZO2ey1vOABGZlAALcquaXywQ812.jpg

圖 6. 氮化鎵雙向開關 (BDS) 的實現,使用 D 模式單片氮化鎵與低壓硅 FET 的級聯配置,以提供高閾值電壓、高柵極裕量、更高的可靠性以及抗噪聲和寄生導通能力。

雙向氮化鎵器件已在用于單級 AC/DC 前端的矩陣有源橋中進行了測試,實現了兩個 AC 極性下的電壓阻斷和成功的系統演示(圖 7)。

wKgZPGey1vOAIOMXAAXldGpgsBQ570.jpg

圖 7. 采用矩陣有源橋的單級 AC/DC 前端中氮化鎵雙向開關 (BDS) 的開關波形。正弦 3 相 AC 輸入,DC 輸出。

雖然氮化鎵已經在許多低功率和中功率應用中投入生產和現場部署,但令人興奮的未來在于高功率機會,它將對經濟、生態和社會產生更強大的影響。本文介紹的高壓和高電流氮化鎵、短路能力和單片雙向集成將在數據中心、人工智能、交通運輸等領域發揮重要作用。

接下來,我們對有望挑戰SiC地位的垂直氮化鎵進行分析。

垂直氮化鎵,尚能飯否?

如大家所見在功率轉換領域,寬帶隙半導體正在迅速取代硅器件。大能隙(碳化硅為 3.23 eV,氮化鎵為 3.4 eV)和相應的大擊穿場使這些材料成為開發高效功率半導體器件的理想材料(材料對比見表 I)。

wKgZPGey1vKAfaW4AAGBiQZt-30642.jpg

在功率半導體領域,目前采用了幾種器件結構,如圖 1 所示。超結晶體管有助于在給定芯片尺寸的情況下最大限度地減少傳導損耗,因此是硅器件的可靠解決方案;碳化硅晶體管基于不同的概念(JFET、平面 MOSFET 或溝槽 MOSFET),目標電壓可達 2 kV 或更高。市面上銷售的氮化鎵晶體管基于橫向 HEMT(高電子遷移率晶體管)設計,由于使用了通過極化摻雜產生的二維電子氣體 (2DEG),可確保高遷移率和低寄生。

wKgZPGey1vOAbszuAAKVfM_N5Wo949.jpg

硅、碳化硅和氮化鎵商用器件之間的比較(圖 2)表明,氮化鎵 HEMT 結構的柵極電荷、反向恢復電荷和

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 晶體管
    +關注

    關注

    77

    文章

    9977

    瀏覽量

    140632
  • 功率器件
    +關注

    關注

    42

    文章

    1907

    瀏覽量

    92138
  • 氮化鎵
    +關注

    關注

    61

    文章

    1758

    瀏覽量

    117483
  • GaN
    GaN
    +關注

    關注

    19

    文章

    2174

    瀏覽量

    76144

原文標題:GaN的未來,是什么?

文章出處:【微信號:芯長征科技,微信公眾號:芯長征科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    氮化 (GaN) 技術:屬性、優點、不同制造工藝及最新進展

    本章將深入探討氮化 (GaN) 技術 :其屬性、優點、不同制造工藝以及最新進展。這種更深入的探討有助于我們了解 :為什么 GaN 能夠在當今這個技術驅動的環境下發揮越來越重要的作用。 GaN
    的頭像 發表于 07-29 11:43 ?1.9w次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b> (GaN) 技術:屬性、優點、不同制造工藝及<b class='flag-5'>最新進展</b>

    中國龍芯CPU及產品最新進展

    本內容向大家講解了中國龍芯CPU是什么意思,龍芯CPU最新產品及龍芯CPU最新進展情況
    發表于 12-07 17:09 ?2.8w次閱讀

    風光互補技術及應用新進展

    風光互補技術及應用新進展   [hide]風光互補技術及應用新進展.rar[/hide] [此貼子已經被作者于2009-10-22 11:52:24編輯過]
    發表于 10-22 11:51

    風光互補技術原理及最新進展

    風光互補技術原理及最新進展摘要: 簡要回顧國內外風電、光伏技術與應用發展態勢,結合風光互補系統應用, 分析、介紹了風光互補LED路燈照明系統、智能控制器設計、分布式供電電源、風光互補水泵系統,并著重
    發表于 10-26 13:45

    電子封裝技術最新進展

    (1.中國電子科技集團公司第五十八研究所,江蘇 無錫 214035;2.中國電子科技集團公司第十三研究所,河北 石家莊 050002)摘 要: 本文綜述了電子封裝技術的最新進展。關鍵詞: 電子;封裝
    發表于 08-23 12:47

    車聯網技術的最新進展

    `直播主題及亮點:在介紹中國車聯網的發展歷史的基礎上,分析目前的車聯網產品類型和技術路線,分析5G的技術特點、優勢和未來市場發展趨勢,介紹北斗與GPS的區別和北斗衛星的最新進展和應用。針對即將成為車
    發表于 09-21 14:01

    介紹IXIAIP測試平臺和所提供測試方案的最新進展

    介紹IXIAIP測試平臺和所提供測試方案的最新進展
    發表于 05-26 06:46

    ITU-T FG IPTV標準化最新進展如何?

    ITU-T FG IPTV標準化最新進展如何?
    發表于 05-27 06:06

    CMOS圖像傳感器最新進展及發展趨勢是什么?

    CMOS圖像傳感器最新進展及發展趨勢是什么?
    發表于 06-08 06:20

    VisionFive 2 AOSP最新進展即將發布!

    非常開心地在這里和大家提前預告,我們即將發布VisionFive 2 集成 AOSP的最新進展!請大家多多期待吧~ 此次通過眾多社區成員的支持和貢獻(https://github.com
    發表于 10-08 09:15

    UWB通信技術最新進展及發展趨勢

    UWB通信技術最新進展及發展趨勢,下來看看
    發表于 02-07 12:44 ?11次下載

    氮化器件和解決方案的進展與應用分析

    觀看Gary Lerude (Microwave Journal)和Bryan Goldstein(ADI航空航天與國防業務部門總經理)的訪談,了解氮化器件和解決方案的最新進展與新應
    的頭像 發表于 08-05 06:06 ?3337次閱讀

    ASML***的最新進展

    、與 Mike在SEMICON 上的一些討論以及 ASML 最近的財報電話會議中的一些內容。以分享了ASML光刻機的最新進展。
    的頭像 發表于 07-30 10:39 ?2683次閱讀
    ASML***的<b class='flag-5'>最新進展</b>

    5G最新進展深度解析.zip

    5G最新進展深度解析
    發表于 01-13 09:06 ?1次下載

    京東方華燦光電氮化器件最新進展

    日前,京東方華燦的氮化研發總監馬歡應半導體在線邀請,分享了關于氮化器件最新進展,引起了行業
    的頭像 發表于 03-13 11:44 ?552次閱讀