女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的特征預(yù)處理問題討論

汽車玩家 ? 來源:今日頭條 ? 作者:不一樣的程序猿 ? 2020-03-15 17:14 ? 次閱讀

本文我們來討論特征預(yù)處理的相關(guān)問題。主要包括特征的歸一化和標(biāo)準(zhǔn)化,異常特征樣本清洗與樣本數(shù)據(jù)不平衡問題的處理。

1. 特征的標(biāo)準(zhǔn)化和歸一化

由于標(biāo)準(zhǔn)化和歸一化這兩個(gè)詞經(jīng)常混用,所以本文不再區(qū)別標(biāo)準(zhǔn)化和歸一化,而通過具體的標(biāo)準(zhǔn)化和歸一化方法來區(qū)別具體的預(yù)處理操作。

z-score標(biāo)準(zhǔn)化:這是最常見的特征預(yù)處理方式,基本所有的線性模型在擬合的時(shí)候都會(huì)做 z-score標(biāo)準(zhǔn)化。具體的方法是求出樣本特征x的均值mean和標(biāo)準(zhǔn)差std,然后用(x-mean)/std來代替原特征。這樣特征就變成了均值為0,方差為1了。在sklearn中,我們可以用StandardScaler來做z-score標(biāo)準(zhǔn)化。當(dāng)然,如果我們是用pandas做數(shù)據(jù)預(yù)處理,可以自己在數(shù)據(jù)框里面減去均值,再除以方差,自己做z-score標(biāo)準(zhǔn)化。

max-min標(biāo)準(zhǔn)化:也稱為離差標(biāo)準(zhǔn)化,預(yù)處理后使特征值映射到[0,1]之間。具體的方法是求出樣本特征x的最大值max和最小值min,然后用(x-min)/(max-min)來代替原特征。如果我們希望將數(shù)據(jù)映射到任意一個(gè)區(qū)間[a,b],而不是[0,1],那么也很簡單。用(x-min)(b-a)/(max-min)+a來代替原特征即可。在sklearn中,我們可以用MinMaxScaler來做max-min標(biāo)準(zhǔn)化。這種方法的問題就是如果測(cè)試集或者預(yù)測(cè)數(shù)據(jù)里的特征有小于min,或者大于max的數(shù)據(jù),會(huì)導(dǎo)致max和min發(fā)生變化,需要重新計(jì)算。所以實(shí)際算法中, 除非你對(duì)特征的取值區(qū)間有需求,否則max-min標(biāo)準(zhǔn)化沒有 z-score標(biāo)準(zhǔn)化好用。

L1/L2范數(shù)標(biāo)準(zhǔn)化:如果我們只是為了統(tǒng)一量綱,那么通過L2范數(shù)整體標(biāo)準(zhǔn)化也是可以的,具體方法是求出每個(gè)樣本特征向量

x→的L2范數(shù)||x→||2,然后用x→/||x→||2代替原樣本特征即可。當(dāng)然L1范數(shù)標(biāo)準(zhǔn)化也是可以的,即用x/||x||1

代替原樣本特征。通常情況下,范數(shù)標(biāo)準(zhǔn)化首選L2范數(shù)標(biāo)準(zhǔn)化。在sklearn中,我們可以用Normalizer來做L1/L2范數(shù)標(biāo)準(zhǔn)化。

此外,經(jīng)常我們還會(huì)用到中心化,主要是在PCA降維的時(shí)候,此時(shí)我們求出特征x的平均值mean后,用x-mean代替原特征,也就是特征的均值變成了0, 但是方差并不改變。這個(gè)很好理解,因?yàn)镻CA就是依賴方差來降維的。

雖然大部分機(jī)器學(xué)習(xí)模型都需要做標(biāo)準(zhǔn)化和歸一化,也有不少模型可以不做做標(biāo)準(zhǔn)化和歸一化,主要是基于概率分布的模型,比如決策樹大家族的CART,隨機(jī)森林等。當(dāng)然此時(shí)使用標(biāo)準(zhǔn)化也是可以的,大多數(shù)情況下對(duì)模型的泛化能力也有改進(jìn)。

2. 異常特征樣本清洗

我們?cè)趯?shí)際項(xiàng)目中拿到的數(shù)據(jù)往往有不少異常數(shù)據(jù),有時(shí)候不篩選出這些異常數(shù)據(jù)很可能讓我們后面的數(shù)據(jù)分析模型有很大的偏差。那么如果我們沒有專業(yè)知識(shí),如何篩選出這些異常特征樣本呢?常用的方法有兩種。

第一種是聚類,比如我們可以用KMeans聚類將訓(xùn)練樣本分成若干個(gè)簇,如果某一個(gè)簇里的樣本數(shù)很少,而且簇質(zhì)心和其他所有的簇都很遠(yuǎn),那么這個(gè)簇里面的樣本極有可能是異常特征樣本了。我們可以將其從訓(xùn)練集過濾掉。

第二種是異常點(diǎn)檢測(cè)方法,主要是使用iForest或者one class SVM,使用異常點(diǎn)檢測(cè)的機(jī)器學(xué)習(xí)算法來過濾所有的異常點(diǎn)。

當(dāng)然,某些篩選出來的異常樣本是否真的是不需要的異常特征樣本,最好找懂業(yè)務(wù)的再確認(rèn)一下,防止我們將正常的樣本過濾掉了。

3. 處理不平衡數(shù)據(jù)

這個(gè)問題其實(shí)不算特征預(yù)處理的部分,不過其實(shí)它的實(shí)質(zhì)還是訓(xùn)練集中各個(gè)類別的樣本的特征分布不一致的問題,所以這里我們一起講。

我們做分類算法訓(xùn)練時(shí),如果訓(xùn)練集里的各個(gè)類別的樣本數(shù)量不是大約相同的比例,就需要處理樣本不平衡問題。也許你會(huì)說,不處理會(huì)怎么樣呢?如果不處理,那么擬合出來的模型對(duì)于訓(xùn)練集中少樣本的類別泛化能力會(huì)很差。舉個(gè)例子,我們是一個(gè)二分類問題,如果訓(xùn)練集里A類別樣本占90%,B類別樣本占10%。 而測(cè)試集里A類別樣本占50%, B類別樣本占50%, 如果不考慮類別不平衡問題,訓(xùn)練出來的模型對(duì)于類別B的預(yù)測(cè)準(zhǔn)確率會(huì)很低,甚至低于50%。

如何解決這個(gè)問題呢?一般是兩種方法:權(quán)重法或者采樣法。

權(quán)重法是比較簡單的方法,我們可以對(duì)訓(xùn)練集里的每個(gè)類別加一個(gè)權(quán)重class weight。如果該類別的樣本數(shù)多,那么它的權(quán)重就低,反之則權(quán)重就高。如果更細(xì)致點(diǎn),我們還可以對(duì)每個(gè)樣本加權(quán)重sample weight,思路和類別權(quán)重也是一樣,即樣本數(shù)多的類別樣本權(quán)重低,反之樣本權(quán)重高。sklearn中,絕大多數(shù)分類算法都有class weight和 sample weight可以使用。

如果權(quán)重法做了以后發(fā)現(xiàn)預(yù)測(cè)效果還不好,可以考慮采樣法。

采樣法常用的也有兩種思路,一種是對(duì)類別樣本數(shù)多的樣本做子采樣, 比如訓(xùn)練集里A類別樣本占90%,B類別樣本占10%。那么我們可以對(duì)A類的樣本子采樣,直到子采樣得到的A類樣本數(shù)和B類別現(xiàn)有樣本一致為止,這樣我們就只用子采樣得到的A類樣本數(shù)和B類現(xiàn)有樣本一起做訓(xùn)練集擬合模型。第二種思路是對(duì)類別樣本數(shù)少的樣本做過采樣, 還是上面的例子,我們對(duì)B類別的樣本做過采樣,直到過采樣得到的B類別樣本數(shù)加上B類別原來樣本一起和A類樣本數(shù)一致,最后再去擬合模型。

上述兩種常用的采樣法很簡單,但是都有個(gè)問題,就是采樣后改變了訓(xùn)練集的分布,可能導(dǎo)致泛化能力差。所以有的算法就通過其他方法來避免這個(gè)問題,比如SMOTE算法通過人工合成的方法來生成少類別的樣本。方法也很簡單,對(duì)于某一個(gè)缺少樣本的類別,它會(huì)隨機(jī)找出幾個(gè)該類別的樣本,再找出最靠近這些樣本的若干個(gè)該類別樣本,組成一個(gè)候選合成集合,然后在這個(gè)集合中不停的選擇距離較近的兩個(gè)樣本(x1,y),(x2,y),在這兩個(gè)樣本之間,比如中點(diǎn),構(gòu)造一個(gè)新的該類別樣本。舉個(gè)例子,比如該類別的候選合成集合有兩個(gè)樣本(x1,y),(x2,y),那么SMOTE采樣后,可以得到一個(gè)新的訓(xùn)練樣本((x1+x2)/2,y),(x1+x22,y),通過這種方法,我們可以得到不改變訓(xùn)練集分布的新樣本,讓訓(xùn)練集中各個(gè)類別的樣本數(shù)趨于平衡。我們可以用imbalance-learn這個(gè)Python庫中的SMOTEENN類來做SMOTE采樣。

4. 結(jié)語

特征工程系列終于寫完了,這個(gè)系列的知識(shí)比較零散,更偏向工程方法,所以不像算法那么緊湊,寫的也不是很好,希望大家批評(píng)指正。如果有其他好的特征工程方法需要補(bǔ)充的,歡迎留言評(píng)論。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    FPGA Verilog HDL語法之編譯預(yù)處理

    Verilog HDL語言和C語言一樣也提供了編譯預(yù)處理的功能。“編譯預(yù)處理”是Verilog HDL編譯系統(tǒng)的一個(gè)組成部分。Verilog HDL語言允許在程序中使用幾種特殊的命令(它們不是一般
    的頭像 發(fā)表于 03-27 13:30 ?441次閱讀
    FPGA Verilog HDL語法之編譯<b class='flag-5'>預(yù)處理</b>

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+兩本互為支持的書

    》一書則是介紹視覺處理的執(zhí)行體,該執(zhí)行體力圖以更人性化的方式來執(zhí)行和處理問題,即以具身的形式,而非傳統(tǒng)的機(jī)械式的生硬形式來充當(dāng)執(zhí)行體。 也就是說是以人體特征機(jī)器人的形式來感知周圍環(huán)境
    發(fā)表于 01-01 15:50

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)流程

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)是一個(gè)復(fù)雜而系統(tǒng)的過程,涉及數(shù)據(jù)收集、處理特征提取、模型訓(xùn)練、評(píng)估、部署和監(jiān)控等多個(gè)環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?371次閱讀

    自然語言處理機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能和語言學(xué)領(lǐng)域的一個(gè)分支,它致力于研究如何讓計(jì)算機(jī)能夠理解、解釋和生成人類語言。機(jī)器學(xué)習(xí)(Machine
    的頭像 發(fā)表于 12-05 15:21 ?1730次閱讀

    Minitab 數(shù)據(jù)清理與預(yù)處理技巧

    Minitab是一款功能強(qiáng)大的統(tǒng)計(jì)分析和質(zhì)量管理軟件,在數(shù)據(jù)分析過程中,數(shù)據(jù)清理與預(yù)處理是至關(guān)重要的環(huán)節(jié)。以下是一些在Minitab中進(jìn)行數(shù)據(jù)清理與預(yù)處理的技巧: 一、數(shù)據(jù)導(dǎo)入與格式調(diào)整 導(dǎo)入數(shù)據(jù)
    的頭像 發(fā)表于 12-02 16:06 ?1282次閱讀

    eda在機(jī)器學(xué)習(xí)中的應(yīng)用

    機(jī)器學(xué)習(xí)項(xiàng)目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過程中不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-13 10:42 ?768次閱讀

    語音識(shí)別機(jī)器人的工作原理

    語音識(shí)別機(jī)器人的工作原理主要基于一系列復(fù)雜的技術(shù)流程,包括信號(hào)采集、預(yù)處理特征提取、聲學(xué)模型匹配、語言模型預(yù)測(cè)以及最終的解碼輸出。 一、信號(hào)采集 語音識(shí)別機(jī)器人首先通過麥克風(fēng)等音頻輸
    的頭像 發(fā)表于 10-25 09:25 ?937次閱讀

    C55x CSL音頻預(yù)處理

    電子發(fā)燒友網(wǎng)站提供《C55x CSL音頻預(yù)處理.pdf》資料免費(fèi)下載
    發(fā)表于 09-19 11:30 ?0次下載
    C55x CSL音頻<b class='flag-5'>預(yù)處理</b>

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    本人有些機(jī)器學(xué)習(xí)的基礎(chǔ),理解起來一點(diǎn)也不輕松,加油。 作者首先說明了時(shí)間序列的信息提取是時(shí)間序列分析的一個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預(yù)測(cè)任務(wù),可以
    發(fā)表于 08-14 18:00

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書概覽與時(shí)間序列概述

    數(shù)據(jù)中提取特征并將其轉(zhuǎn)化為交易策略,以及機(jī)器學(xué)習(xí)在其他金融領(lǐng)域(包括資產(chǎn)定價(jià)、資產(chǎn)配置、波動(dòng)率預(yù)測(cè))的應(yīng)用。 全書彩版印刷,內(nèi)容結(jié)構(gòu)嚴(yán)整,條理清晰,循序漸進(jìn),由淺入深,是很好的時(shí)間序列學(xué)習(xí)
    發(fā)表于 08-07 23:03

    機(jī)器學(xué)習(xí)中的數(shù)據(jù)預(yù)處理特征工程

    機(jī)器學(xué)習(xí)的整個(gè)流程中,數(shù)據(jù)預(yù)處理特征工程是兩個(gè)至關(guān)重要的步驟。它們直接決定了模型的輸入質(zhì)量,進(jìn)而影響模型的訓(xùn)練效果和泛化能力。本文將從數(shù)據(jù)預(yù)處理
    的頭像 發(fā)表于 07-09 15:57 ?1168次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被
    的頭像 發(fā)表于 06-27 08:27 ?1939次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用

    特征工程與數(shù)據(jù)預(yù)處理全解析:基礎(chǔ)技術(shù)和代碼示例

    機(jī)器學(xué)習(xí)和數(shù)據(jù)科學(xué)的世界里,數(shù)據(jù)的質(zhì)量是建模成功與否的關(guān)鍵所在。這就是特征工程和數(shù)據(jù)預(yù)處理發(fā)揮作用的地方。本文總結(jié)的這些關(guān)鍵步驟可以顯著提高模型的性能,獲得更準(zhǔn)確的預(yù)測(cè),我們將深入研
    的頭像 發(fā)表于 06-26 08:28 ?694次閱讀
    <b class='flag-5'>特征</b>工程與數(shù)據(jù)<b class='flag-5'>預(yù)處理</b>全解析:基礎(chǔ)技術(shù)和代碼示例

    通過強(qiáng)化學(xué)習(xí)策略進(jìn)行特征選擇

    來源:DeepHubIMBA特征選擇是構(gòu)建機(jī)器學(xué)習(xí)模型過程中的決定性步驟。為模型和我們想要完成的任務(wù)選擇好的特征,可以提高性能。如果我們處理
    的頭像 發(fā)表于 06-05 08:27 ?580次閱讀
    通過強(qiáng)化<b class='flag-5'>學(xué)習(xí)</b>策略進(jìn)行<b class='flag-5'>特征</b>選擇

    信號(hào)的預(yù)處理包括哪些環(huán)節(jié)

    的各個(gè)環(huán)節(jié),包括信號(hào)的采集、預(yù)濾波、采樣、量化、編碼、去噪、特征提取等。 信號(hào)采集 信號(hào)采集是信號(hào)預(yù)處理的第一步,它涉及到從實(shí)際物理現(xiàn)象中獲取信號(hào)的過程。信號(hào)采集的方法取決于信號(hào)的類型和來源,例如聲音、圖像、溫
    的頭像 發(fā)表于 06-03 10:35 ?4988次閱讀