完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 光譜
光譜(spectrum) :是復色光經過色散系統(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學頻譜。
光譜(spectrum) :是復色光經過色散系統(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學頻譜。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長范圍內的電磁輻射被稱作可見光。光譜并沒有包含人類大腦視覺所能區別的所有顏色,譬如褐色和粉紅色。
光波是由原子運動過程中的電子產生的。各種物質的原子內部電子的運動情況不同,所以它們發射的光波也不同。研究不同物質的發光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學科——光譜學。分子的紅外吸收光譜一般是研究分子的振動光譜與轉動光譜的,其中分子振動光譜一直是主要的研究課題。
光譜(spectrum) :是復色光經過色散系統(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學頻譜。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長范圍內的電磁輻射被稱作可見光。光譜并沒有包含人類大腦視覺所能區別的所有顏色,譬如褐色和粉紅色。
光波是由原子運動過程中的電子產生的。各種物質的原子內部電子的運動情況不同,所以它們發射的光波也不同。研究不同物質的發光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學科——光譜學。分子的紅外吸收光譜一般是研究分子的振動光譜與轉動光譜的,其中分子振動光譜一直是主要的研究課題。
原理
復色光中有著各種波長(或頻率)的光,這些光在介質中有著不同的折射率。因此,當復色光通過具有一定幾何外形的介質(如三棱鏡)之后,波長不同的光線會因出射角的不同而發生色散現象,投映出連續的或不連續的彩色光帶。這個原理亦被應用于著名的太陽光的色散實驗。太陽光呈現白色,當它通過三棱鏡折射后,將形成由紅、橙、黃、綠、藍、靛、紫順次連續分布的彩色光譜,覆蓋了大約在390到770納米的可見光區。歷史上,這一實驗由英國科學家艾薩克·牛頓爵士于1665年完成,使得人們第一次接觸到了光的客觀的和定量的特征。
光譜定性分析
光譜定性分析就是根據光譜圖中是否有某元素的特征譜線(一般是最后線)出現來判斷樣品中是否含有某種元素。定性分析方法常有以下兩種。(1)標準試樣光譜比較法將要檢出元素的純物質或純化合物與試樣并列攝譜于同一感光板上,在映譜儀上檢查試樣光譜與純物質光譜。若兩者譜線出現在同一波長位置上,即可說明某一元素的某條譜線存在。此法多用于不經常遇到的元素或譜圖上沒有的元素分析。(2)鐵光譜比較法鐵光譜比較法是目前最通用的方法,它采用鐵的光譜作為波長的標尺,來判斷其它元素的譜線。鐵光譜作標尺有如下特點。①譜線多,在210~600nm范圍內有幾千條譜線;②譜線間相距都很近,在上述波長范圍內均勻分布,對每一條鐵譜線波長,人們都已進行了精確的測量。
激發光譜與發射光譜有什么區別?
1. 熒光的定義(fluorescence)。
對于熒光有這樣一些文字的定義和解釋:a. “熒光是物質或分子發出的冷光(luminescence)”。所謂冷光,是指光并非由熱產生,可以是光致、電致、化學反應所致等等(反正就不能是熱致)。b. “當某種常溫物質經某種波長的入射光(通常是紫外線或X射線)照射,吸收光能后進入激發態,立即退激發并發出比入射光波長長的出射光(通常波長在可見光波段);而且一旦停止入射光,發光現象也隨之立即消失。具有這種性質的出射光就被稱之為熒光。”
這些文字的解釋都難以理解和形象化。其實對于熒光最好的解釋來自于對光子與物質分子作用過程(分子的激發和馳豫)的理解。
2. 熒光從何而來 —— 分子的激發和馳豫 ?
圖 1
PS:圖1摘自Principles of fluorescence Spectroscopy, Joseph R. Lakowicz
圖1為一種Jablonski diagram(就簡單的理解為能級圖吧)。圖中S0,S1,S2分別表示分子中的電子基態,第一、第二電子激發態。當分子吸收光子,電子則可能從基態(S0)躍遷到激發態(S1,S2)。激發態電子不穩定,會從激發態(S1,S2)回到基態(S0),并發出熒光(這就是熒光的源頭)。當然并不一定要發出熒光,可以產生熱或者其他形式能量。如果電子從激發態(S1)通過系間竄越轉化為電子T1激發態,然后再從激發態T1回到S0,則發出磷光。(磷光與熒光的根本區別在此)。至于S1激發態和T1激發態的區別主要在于電子自旋的方向(單線態和三線態)。
分子吸收光后其中電子的激發和馳豫分別需要滿足兩大規律。激發過程滿足Franck – Condon規則;退激發滿足Kasha規則。Franck– Condon規則(圖2A)的大意為:電子的躍遷過程很快,這一過程中原子核的相對位置來不及發生變化,可以簡單理解為垂直躍遷。而Kasha規則(圖2B)規定在電子馳豫復合的過程中,首先電子要馳豫到電子激發態的最低能級,然后再回到基態。如圖2所示:
圖 2
PS:圖2摘自維基百科相關詞條
3. 如何解讀熒光光譜(穩態)
3a :熒光光譜分為:激發光譜(PLE)和發射光譜(PL)。
激發光譜:固定發射光的波長,改變激發光的波長,記錄熒光強度隨激發波長的變化。
發射光譜:固定激發光的波長,記錄不同發射波長處熒光強度隨發射波長的變化。
無論是激發還是發射熒光光譜圖,其都是記錄發射熒光強度隨波長的變化。所以熒光光譜中縱坐標為強度,橫坐標為波長。首先從圖中能獲取峰位和半峰寬。峰位的直觀體現是熒光的顏色;半峰寬則表示熒光的純度。
圖 3
PS:圖3摘自Nano Letters,2,1027
熒光光譜常與吸收光譜同時出現。所以可以與分子的吸收光譜相比較。圖3A為同一物質的吸收光譜(UV - Vis)、熒光激發光譜(PLE)和熒光發射光譜圖(PL)。從圖中不難發現激發光譜與吸收光譜非常相似。但是兩者有著本質的不同,吸收光譜的縱坐標是吸光度(Absorbance),反應物質吸收光的情況;熒光光譜的縱坐標是分子發出的熒光強度(Intensity),其不僅與物質吸光能力有關還和量子效率有關。在很多研究體系中,常常結合兩者分析問題。
【標桿案例】山東濟南某污水廠:光譜多參數+智能物聯重塑污泥沉降監測新模式
在污水處理廠污泥沉降環節中,水質參數監測是實現精細化管理和工藝優化的核心手段。山東濟南某污水處理廠通過部署凱米斯科技FUV-408全光譜多參數傳感器與智...
光譜共焦用不好?這15個Q&A幫你突破測量瓶頸!
在精密測量領域,明治的ADK系列與ACC系列光譜共焦傳感器以各自獨特的技術優勢廣泛應用于工業檢測、科研實驗等高精度位移測量場景。ADK系列一拖二雙探頭;...
XKCON祥控在線式近紅外水分檢測儀能夠對中藥材的含水量進行動態、快速、無損、無污染檢測
XKCON祥控近紅外水分檢測儀XKCON-NIR-MA-FV基于近紅外(NIR)光譜技術研制,由近紅外水分檢測探頭和控制器兩部分組成;使用時,將近紅外水...
光譜傳感器是一種能夠檢測多種顏色和光譜信息的傳感器,通過測量物體的光譜特征,可以實現對物體的顏色、成分等屬性的準確判斷。以下是對光譜傳感器具體應用的詳細介紹:
光譜傳感器是一種光譜分析儀,它通過將光照射到物質上并測量光的反射、散射和吸收來獲取分子信息。以下是關于光譜傳感器的詳細介紹:
光譜傳感器是一種能夠測量物質光譜特性的儀器,其一般原理主要基于物質對不同波長的光的吸收、發射和散射等特性進行分析,從而獲取物質的光譜信息。以下是對光譜傳...
在材料科學的璀璨星空中,鈣鈦礦材料宛如一顆冉冉升起的新星,憑借其卓越的性能,尤其是在太陽能電池領域的巨大潛力,吸引了全球科研人員與商業化應用的目光。 隨...
四川綿陽某環保公司:凱米斯科技光譜多參數助力“三江兩湖一河”水美工程建設
點擊藍字,關注我們CHEMINS在四川省“水美建設”與“美麗中國”戰略的雙重驅動下,凱米斯科技與四川某環保公司以技術創新踐行綠色發展使命,為長江上游生態...
湖北十堰某污水廠:凱米斯科技光譜多參數+智能終端打造水質監測新標桿
在漢江之畔的十堰市,這座肩負著“一庫清水永續北送”使命的生態之城,一場關于水質監測的科技革命正在上演。凱米斯科技光譜多參數傳感器以秒級高頻掃描,為出廠水...
上海光機所在單級充氣空芯毛細管光纖可調諧紫外色散波研究中取得進展
圖1 (a) 實驗裝置,(b) 紫外色散波輻射的相位匹配曲線,(c) 可調諧紫外色散波光譜測量。 近期,中國科學院上海光學精密機械研究所超強激光科學與技...
隨著健康意識的提升與生活方式的轉變,人們對健康光源的要求越來越高。鴻利智匯集團旗下子公司斯邁得憑借領先的光譜技術,推出自然光系列產品,以智能科技模擬自然...
上海光機所在972nm摻Yb石英光纖激光器實現超40mW穩定單頻激光輸出
圖1 光纖激光器輸出功率曲線及光譜 近日,中國科學院上海光學精密機械研究所先進激光與光電功能材料部特種玻璃與光纖研究中心團隊首次報道了一種高性能的972...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |