女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>電子資料>PyTorch教程13.3之自動并行

PyTorch教程13.3之自動并行

2023-06-05 | pdf | 0.44 MB | 次下載 | 免費

資料介紹

深度學習框架(例如 MXNet 和 PyTorch)在后端自動構建計算圖。使用計算圖,系統了解所有依賴關系,并可以選擇性地并行執行多個非相互依賴的任務以提高速度。例如,第 13.2 節中的圖 13.2.2 獨立地初始化了兩個變量。因此,系統可以選擇并行執行它們。

通常,單個運算符將使用所有 CPU 或單個 GPU 上的所有計算資源。例如,dot算子將使用所有 CPU 上的所有內核(和線程),即使在一臺機器上有多個 CPU 處理器這同樣適用于單個 GPU。因此,并行化對于單設備計算機不是很有用。有了多個設備,事情就更重要了。雖然并行化通常在多個 GPU 之間最相關,但添加本地 CPU 會略微提高性能。例如,參見 Hadjis等人。( 2016 年)專注于訓練結合 GPU 和 CPU 的計算機視覺模型。借助自動并行化框架的便利,我們可以在幾行 Python 代碼中實現相同的目標。更廣泛地說,我們對自動并行計算的討論集中在使用 CPU 和 GPU 的并行計算,以及計算和通信的并行化。

請注意,我們至少需要兩個 GPU 才能運行本節中的實驗。

import torch
from d2l import torch as d2l
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

13.3.1。GPU 上的并行計算

讓我們首先定義一個要測試的參考工作負載:run 下面的函數使用分配到兩個變量中的數據在我們選擇的設備上執行 10 次矩陣-矩陣乘法:x_gpu1x_gpu2

devices = d2l.try_all_gpus()
def run(x):
  return [x.mm(x) for _ in range(50)]

x_gpu1 = torch.rand(size=(4000, 4000), device=devices[0])
x_gpu2 = torch.rand(size=(4000, 4000), device=devices[1])

現在我們將函數應用于數據。為了確保緩存不會在結果中發揮作用,我們通過在測量之前對其中任何一個執行單次傳遞來預熱設備。torch.cuda.synchronize() 等待 CUDA 設備上所有流中的所有內核完成。它接受一個device參數,即我們需要同步的設備。current_device()如果設備參數為(默認),則它使用由 給出的當前設備None

run(x_gpu1)
run(x_gpu2) # Warm-up all devices
torch.cuda.synchronize(devices[0])
torch.cuda.synchronize(devices[1])

with d2l.Benchmark('GPU1 time'):
  run(x_gpu1)
  torch.cuda.synchronize(devices[0])

with d2l.Benchmark('GPU2 time'):
  run(x_gpu2)
  torch.cuda.synchronize(devices[1])
GPU1 time: 0.4967 sec
GPU2 time: 0.5151 sec

如果我們刪除synchronize兩個任務之間的語句,系統就可以自由地自動在兩個設備上并行計算。

with d2l.Benchmark('GPU1 & GPU2'):
  run(x_gpu1)
  run(x_gpu2)
  torch.cuda.synchronize()
GPU1 & GPU2: 0.5000 sec
devices = d2l.try_all_gpus()
def run(x):
  return [x.dot(x) for _ in range(50)]

x_gpu1 = np.random.uniform(size=(4000, 4000), ctx=devices[0])
x_gpu2 = np.random.uniform(size=(4000, 4000), ctx=devices[1])

Now we apply the function to the data. To ensure that caching does not play a role in the results we warm up the devices by performing a single pass on either of them prior to measuring.

run(x_gpu1) # Warm-up both devices
run(x_gpu2)
npx.waitall()

with d2l.Benchmark('GPU1 time'):
  run(x_gpu1)
  npx.waitall()

with d2l.Benchmark('GPU2 time'):
  run(x_gpu2)
  npx.waitall()
GPU1 time: 0.5233 sec
GPU2 time: 0.5158 sec

If we remove the waitall statement between both tasks the system is free to parallelize computation on both devices automatically.

with d2l.Benchmark('GPU1 & GPU2'):
  run(x_gpu1)
  run(x_gpu2)
  npx.waitall()
GPU1 & GPU2: 0.5214 sec

在上述情況下,總執行時間小于其各部分的總和,因為深度學習框架會自動安排兩個 GPU 設備上的計算,而不需要代表用戶編寫復雜的代碼。

13.3.2。并行計算與通信

在許多情況下,我們需要在不同設備之間移動數據,比如在 CPU 和 GPU 之間,或者在不同 GPU 之間。例如,當我們想要執行分布式優化時會發生這種情況,我們需要在多個加速器卡上聚合梯度。讓我們通過在 GPU 上計算然后將結果復制回 CPU 來對此進行模擬

def copy_to_cpu(x, non_blocking=False):
  return [y.to('cpu', non_blocking=non_blocking) for y in x]

with d2l.Benchmark('Run on GPU1'):
  y = run(x_gpu1)
  torch.cuda.synchronize()

with d2l.Benchmark('Copy to CPU'):
  y_cpu = copy_to_cpu(y)
  torch.cuda.synchronize()
Run on GPU1: 0.5019 sec
Copy to CPU: 2.7168 sec

這有點低效。請注意,我們可能已經開始將 的部分內容復制y到 CPU,而列表的其余部分仍在計算中。這種情況會發生,例如,當我們計算小批量的(反向傳播)梯度時。一些參數的梯度將比其他參數更早可用。因此,在 GPU 仍在運行時開始使用 PCI-Express 總線帶寬對我們有利。在 PyTorch 中,幾個函數(例如to()和)copy_()承認一個顯式non_blocking參數,它允許調用者在不需要時繞過同步。設置non_blocking=True 允許我們模擬這種情況。

with d2l.Benchmark('Run on GPU1 and copy to CPU'):
  y = run(x_gpu1)
  y_cpu = copy_to_cpu(y, True)
  torch.cuda.synchronize()
Run on GPU1 and copy to CPU: 2.4682 sec
def copy_to_cpu(x):
  return [y.copyto(npx.cpu()) for y in x]

with d2l.Benchmark('Run on GPU1'):
  y = run(x_gpu1)
  npx.waitall()

with d2l.Benchmark('Copy to CPU'):
  y_cpu = copy_to_cpu(y)
  npx.waitall()
Run on GPU1: 0.5796 sec
Copy to CPU: 3.0989 sec

This is somewhat inefficient. Note that we could already start copying parts of y to the CPU while the remainder of the list is still being computed. This situation occurs, e.g., when we compute the gradient on a minibatch. The gradients of some of the parameters will be available earlier than that of others. Hence it works to our advantage to start using PCI-Express bus bandwidth while the GPU is still running. Removing waitall between both parts allows us to simulate this scenario.

with d2l.Benchmark('Run on GPU1 and copy to CPU'):
  y = run(x_gpu1)
  y_cpu = copy_to_cpu(y)
  npx.waitall()
Run on GPU1 and copy to CPU: 3.3488 sec

兩個操作所需的總時間(正如預期的那樣)小于它們各部分的總和。請注意,此任務不同于并行計算,因為它使用不同的資源:CPU 和 GPU 之間的總線。事實上,我們可以同時在兩個設備上進行計算和通信。如上所述,計算和通信之間存在依賴關系:y[i]必須在將其復制到 CPU 之前進行計算。幸運的是,系統可以y[i-1]邊計算邊 復制y[i],以減少總運行時間。

我們以在一個 CPU 和兩個 GPU 上進行訓練時簡單的兩層 MLP 的計算圖及其依賴關系的圖示作為結尾,如圖13.3.1所示。手動安排由此產生的并行程序將非常痛苦。這就是擁有基于圖形的計算后端進行優化的優勢所在。

https://file.elecfans.com/web2/M00/A9/CC/poYBAGR9OqiAEhMjADhnzKcOtWI169.svg

圖 13.3.1兩層 MLP 在一個 CPU 和兩個 GPU 上的計算圖及其依賴關系。

13.3.3。概括

  • 現代系統具有多種設備,例如多個 GPU 和 CPU。它們可以并行、異步使用。

  • 現代系統還具有多種通信資源,例如 PCI Express、存儲(通常是固態驅動器或通過網絡)和網絡帶寬。它們可以并聯使用以達到最高效率。

  • 后端可以通過自動并行計算和通信來提高性能。

13.3.4。練習

  1. run在本節定義的函數中執行了八個操作。它們之間沒有依賴關系。設計一個實驗,看看深度學習框架是否會自動并行執行它們。

  2. 當單個操作員的工作量足夠小時,并行化甚至可以在單個 CPU 或 GPU 上提供幫助。設計一個實驗來驗證這一點。

  3. 設計一個實驗,在 CPU、GPU 上使用并行計算,并在兩個設備之間進行通信。

  4. 使用 NVIDIA 的Nsight等調試器 來驗證您的代碼是否有效。

  5. 設計包含更復雜數據依賴關系的計算任務,并運行實驗以查看是否可以在提高性能的同時獲得正確的結果。


評論

查看更多

下載排行

本周

  1. 1DD3118電路圖紙資料
  2. 0.08 MB   |  1次下載  |  免費
  3. 2AD庫封裝庫安裝教程
  4. 0.49 MB   |  1次下載  |  免費
  5. 3PC6206 300mA低功耗低壓差線性穩壓器中文資料
  6. 1.12 MB   |  1次下載  |  免費
  7. 4網絡安全從業者入門指南
  8. 2.91 MB   |  1次下載  |  免費
  9. 5DS-CS3A P00-CN-V3
  10. 618.05 KB  |  1次下載  |  免費
  11. 6海川SM5701規格書
  12. 1.48 MB  |  次下載  |  免費
  13. 7H20PR5電磁爐IGBT功率管規格書
  14. 1.68 MB   |  次下載  |  1 積分
  15. 8IP防護等級說明
  16. 0.08 MB   |  次下載  |  免費

本月

  1. 1貼片三極管上的印字與真實名稱的對照表詳細說明
  2. 0.50 MB   |  103次下載  |  1 積分
  3. 2涂鴉各WiFi模塊原理圖加PCB封裝
  4. 11.75 MB   |  89次下載  |  1 積分
  5. 3錦銳科技CA51F2 SDK開發包
  6. 24.06 MB   |  43次下載  |  1 積分
  7. 4錦銳CA51F005 SDK開發包
  8. 19.47 MB   |  19次下載  |  1 積分
  9. 5PCB的EMC設計指南
  10. 2.47 MB   |  16次下載  |  1 積分
  11. 6HC05藍牙原理圖加PCB
  12. 15.76 MB   |  13次下載  |  1 積分
  13. 7802.11_Wireless_Networks
  14. 4.17 MB   |  12次下載  |  免費
  15. 8蘋果iphone 11電路原理圖
  16. 4.98 MB   |  6次下載  |  2 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935127次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
  4. 1.48MB  |  420064次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233089次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191390次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183342次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81588次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73815次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65989次下載  |  10 積分