本節(jié)主要將近年來基于候選區(qū)域的目標(biāo)檢測算法分為五個(gè)部分進(jìn)行綜述,首先介紹了Faster R-CNN[14]框架的發(fā)展歷程,然后綜述了對(duì)Faster R-CNN算法的四個(gè)重要組成部分(特征提取網(wǎng)絡(luò)、ROI Pooling層、RPN、NMS算法)的改進(jìn)研究.
2023-01-09 10:52:32
861 深度學(xué)習(xí)在科學(xué)計(jì)算中獲得了廣泛的普及,其算法被廣泛用于解決復(fù)雜問題的行業(yè)。所有深度學(xué)習(xí)算法都使用不同類型的神經(jīng)網(wǎng)絡(luò)來執(zhí)行特定任務(wù)。
2024-01-03 10:28:21
460 
經(jīng)典機(jī)器學(xué)習(xí)算法介紹章節(jié)目標(biāo):機(jī)器學(xué)習(xí)是人工智能的重要技術(shù)之一,詳細(xì)了解機(jī)器學(xué)習(xí)的原理、機(jī)制和方法,為學(xué)習(xí)深度學(xué)習(xí)與遷移學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。二、深度學(xué)習(xí)簡介與經(jīng)典網(wǎng)絡(luò)結(jié)構(gòu)介紹神經(jīng)網(wǎng)絡(luò)簡介神經(jīng)網(wǎng)絡(luò)組件簡介
2022-04-28 18:56:07
電子發(fā)燒友總結(jié)了以“算法”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)經(jīng)典算法大全(51個(gè)C語言算法+單片機(jī)常用算法+機(jī)器學(xué)十大算法)11種常見
2019-05-09 17:06:40
目錄人工智能基本概念機(jī)器學(xué)習(xí)算法1. 決策樹2. KNN3. KMEANS4. SVM5. 線性回歸深度學(xué)習(xí)算法1. BP2. GANs3. CNN4. LSTM應(yīng)用人工智能基本概念數(shù)據(jù)集:訓(xùn)練集
2021-09-06 08:21:17
人臉檢測算法及新的快速算法人臉識(shí)別設(shè)備憑借著便捷的應(yīng)用,以及更加新潮的技術(shù),俘獲了不少人的好感。于是,它的應(yīng)用也在日益的變得更加的廣泛。由中國電子學(xué)會(huì)主辦的全國圖形圖像技術(shù)應(yīng)用大會(huì),行業(yè)專家將介紹
2013-09-26 15:13:24
目前優(yōu)化了一款高速人臉檢測算法,在 ARM設(shè)備的A73單核CPU(圖像大小:860*540最小人臉大小:60*60)速度可以高達(dá)10-15ms每幀,真正的實(shí)時(shí)人臉檢測算法,算法準(zhǔn)確率在 FDDB數(shù)據(jù)
2021-12-15 07:01:06
系統(tǒng)的關(guān)鍵任務(wù)之一,其主要的功能是檢測前方道路上出現(xiàn)的目標(biāo)的空間位置和目標(biāo)類別。傳統(tǒng)目標(biāo)檢測算法依賴于手工設(shè)計(jì)好的特征來對(duì)目標(biāo)進(jìn)行特征提取,以實(shí)現(xiàn)分類和檢測的目的,常見的目標(biāo)特征包括 Scale
2023-03-06 13:55:27
往往會(huì)有更高的性能上限。 優(yōu)點(diǎn):回歸樹可以
學(xué)習(xí)非線性關(guān)系,并且對(duì)
異常值相當(dāng)敏銳。在實(shí)踐中,回歸樹也表現(xiàn)地非常出色,贏得了許多經(jīng)典(即非
深度學(xué)習(xí))的
機(jī)器學(xué)習(xí)比賽。 缺點(diǎn):無約束的單個(gè)樹很容易過擬合,因?yàn)樗鼈?/div>
2019-09-22 08:30:00
無人機(jī)設(shè)計(jì)中姿態(tài)檢測算法、姿態(tài)控制算法有什么區(qū)別 ?推薦課程:張飛四旋翼飛行器視頻套件,76小時(shí)吃透四軸算法http://t.elecfans.com/topic/40.html?elecfans_trackid=bbs_post
2018-07-14 12:12:37
有沒有搞機(jī)器學(xué)習(xí)、人工智能相關(guān)的算法研究的啊?自己一個(gè)人搞感覺挺難的,希望找到志同道合的朋友,相互探討。
2016-02-26 09:56:00
求Matlab圖像自編邊緣檢測算法,多謝了
2013-12-03 20:58:39
算法能夠檢測喚醒詞,而無需工程師花費(fèi)大量時(shí)間來研究和配置芯片上的寄存器。”因此,DSP Group開發(fā)了一種API,可以使語音檢測算法輕松集成到云服務(wù)中。他補(bǔ)充說:“在某種程度上,來自云服務(wù)提供商的語音
2021-03-03 10:46:14
試題學(xué)SPFA算法整體來說,機(jī)器學(xué)習(xí)算法可以分為 3 大類:0.1 監(jiān)督學(xué)習(xí) 工作原理:該算法由自變量(協(xié)變量、預(yù)測變量)和因變量(結(jié)果變量)組成,由一組自變量對(duì)因變量進(jìn)行預(yù)測。通過這些變量集合,我們
2018-10-23 14:31:12
邊緣檢測是什么?邊緣檢測算子有哪些?邊緣檢測算法分為哪幾種?它們有何不同?
2021-05-31 06:57:51
職位描述:1. 負(fù)責(zé)計(jì)算機(jī)視覺&機(jī)器學(xué)習(xí)(包括深度學(xué)習(xí))算法的開發(fā)與性能提升,負(fù)責(zé)下述研究課題中的一項(xiàng)或多項(xiàng),包括但不限于:人臉識(shí)別、檢測、活體、跟蹤、分類、語義分割、深度估計(jì)、圖像處理
2017-12-07 14:34:41
針對(duì)網(wǎng)絡(luò)入侵的不確定性導(dǎo)致異常檢測系統(tǒng)誤報(bào)率較高的不足,提出一種基于Q-學(xué)習(xí)算法的異常檢測模型(QLADM)。該模型把Q-學(xué)習(xí)、行為意圖跟蹤和入侵預(yù)測結(jié)合起
2009-09-02 11:58:38
7 一種微分極值的邊緣檢測算法
本文通過對(duì)邊緣點(diǎn)的定義,提出了一種微分極值的邊緣檢測算法。與經(jīng)典微分算法相比,該算法直接在邊緣檢測窗口內(nèi)提取邊界像
2010-02-22 15:03:56
8 智慧安防AI人員入侵檢測算法系統(tǒng)借助智能視頻分析技術(shù)和YOLO深度學(xué)習(xí)技術(shù)的支持,能夠?qū)ΜF(xiàn)場監(jiān)控?cái)z像機(jī)獲取的視頻進(jìn)行實(shí)時(shí)分析和處理。系統(tǒng)根據(jù)預(yù)先設(shè)定的禁止入內(nèi)地區(qū),通過現(xiàn)場監(jiān)測攝像機(jī)可以準(zhǔn)確地監(jiān)測
2023-12-11 15:37:47
一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測算法_曹猛
2017-01-07 19:08:43
0 基于機(jī)器視覺的色差檢測算法_范鵬飛
2017-03-19 19:25:56
3 本文將帶你遍歷機(jī)器學(xué)習(xí)領(lǐng)域最受歡迎的算法。系統(tǒng)地了解這些算法有助于進(jìn)一步掌握機(jī)器學(xué)習(xí)。當(dāng)然,本文收錄的算法并不完全,分類的方式也不唯一。
2018-06-30 04:24:00
3645 
關(guān)于深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)算法的介紹,包含有對(duì)幾種神經(jīng)網(wǎng)絡(luò)模型的詳細(xì)描述
2017-07-10 16:49:12
4 電子發(fā)燒友網(wǎng)站提供《細(xì)數(shù)幾種常見的自動(dòng)駕駛中的機(jī)器學(xué)習(xí)算法.docx》資料免費(fèi)下載
2017-09-22 14:13:50
2 本文將簡要介紹Spark機(jī)器學(xué)習(xí)庫(Spark MLlibs APIs)的各種機(jī)器學(xué)習(xí)算法,主要包括:統(tǒng)計(jì)算法、分類算法、聚類算法和協(xié)同過濾算法,以及各種算法的應(yīng)用。 你不是一個(gè)數(shù)據(jù)科學(xué)家。根據(jù)
2017-09-28 16:44:43
1 深度學(xué)習(xí)與傳統(tǒng)的機(jī)器學(xué)習(xí)最主要的區(qū)別在于隨著數(shù)據(jù)規(guī)模的增加其性能也不斷增長。當(dāng)數(shù)據(jù)很少時(shí),深度學(xué)習(xí)算法的性能并不好。這是因?yàn)?b class="flag-6" style="color: red">深度學(xué)習(xí)算法需要大量的數(shù)據(jù)來完美地理解它。另一方面,在這種情況下,傳統(tǒng)的機(jī)器學(xué)習(xí)算法使用制定的規(guī)則,性能會(huì)比較好。
2017-10-27 16:50:18
1720 
提出一種新的基于粒子群優(yōu)化算法的屬性異常檢測算法。該算法利用粒子群優(yōu)化算法簡單、尋優(yōu)速度快的優(yōu)點(diǎn)檢測屬性異常,在粒子群尋找最優(yōu)值的過程中發(fā)現(xiàn)可能是屬性異常的數(shù)據(jù),并采用0-measure適應(yīng)度評(píng)估
2017-11-20 09:21:37
4 Statsbot數(shù)據(jù)科學(xué)家Daniil Korbut簡明扼要地介紹了用于推薦系統(tǒng)的主流機(jī)器學(xué)習(xí)算法:協(xié)同過濾、矩陣分解、聚類、深度學(xué)習(xí)。
2017-12-15 14:11:28
4498 機(jī)器學(xué)習(xí)起源于人工智能,可以賦予計(jì)算機(jī)以傳統(tǒng)編程所無法實(shí)現(xiàn)的能力,比如飛行器的自動(dòng)駕駛、人臉識(shí)別、計(jì)算機(jī)視覺和數(shù)據(jù)挖掘等。機(jī)器學(xué)習(xí)的算法很多。很多時(shí)候困惑人們的是,很多算法是一類算法,而有些算法又是
2018-01-05 17:36:10
3101 
傳統(tǒng)基于歐氏距離的異常檢測算法在高維數(shù)據(jù)檢測中存在精度無法保證以及運(yùn)行時(shí)間過長的問題。為此,結(jié)合高維數(shù)據(jù)流的特點(diǎn)運(yùn)用角度方差的方法,提出一種改進(jìn)的基于角度方差的數(shù)據(jù)流異常檢測算法。通過構(gòu)建最佳數(shù)據(jù)
2018-01-17 11:29:34
1 機(jī)器學(xué)習(xí)無疑是當(dāng)前數(shù)據(jù)分析領(lǐng)域的一個(gè)熱點(diǎn)內(nèi)容。很多人在平時(shí)的工作中都或多或少會(huì)用到機(jī)器學(xué)習(xí)的算法。這里小編為您總結(jié)一下常見的機(jī)器學(xué)習(xí)算法,以供您在工作和學(xué)習(xí)中參考。
2018-02-02 17:20:46
1552 
算法永遠(yuǎn)是一段代碼的靈魂,面對(duì)海量的機(jī)器學(xué)習(xí)算法,萌新最愛問的是,“我該選什么算法?”
2018-03-29 14:10:39
7887 基于目前人類在神經(jīng)網(wǎng)絡(luò)算法和機(jī)器深度學(xué)習(xí)取得的成就,很容易讓人產(chǎn)生計(jì)算機(jī)科學(xué)只包含這兩部分的錯(cuò)覺。一種全新的算法甚至比深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)有更明顯的優(yōu)勢:這種算法是基于創(chuàng)造人類大腦的方式——進(jìn)化來進(jìn)行的。
2018-08-06 08:27:11
2985 
最常見的機(jī)器學(xué)習(xí)算法是學(xué)習(xí)映射Y = f(X)來預(yù)測新X的Y,這叫做預(yù)測建模或預(yù)測分析。
2019-05-05 09:21:00
3474 
本文主要介紹一個(gè)被廣泛使用的機(jī)器學(xué)習(xí)分類算法,K-nearest neighbors(KNN),中文叫K近鄰算法。
2019-10-31 17:18:14
5657 對(duì)于初學(xué)者來說,這很容易讓人混淆,因?yàn)椤?b class="flag-6" style="color: red">機(jī)器學(xué)習(xí)算法”經(jīng)常與“機(jī)器學(xué)習(xí)模型”交替使用。這兩個(gè)到底是一樣的東西呢,還是不一樣的東西?作為開發(fā)人員,你對(duì)排序算法、搜索算法等“算法”的直覺,將有助于你厘清這個(gè)困惑。在本文中,我將闡述機(jī)器學(xué)習(xí)“算法”和“模型”之間的區(qū)別。
2020-07-31 15:38:08
3347 一、簡介 異常檢測一直是機(jī)器學(xué)習(xí)中一個(gè)非常重要的子分支,在各種人工智能落地應(yīng)用例如計(jì)算機(jī)視覺、數(shù)據(jù)挖掘、NLP中,異常檢測算法都是很熱門的研究方向,特別是大數(shù)據(jù)時(shí)代,人工處理數(shù)據(jù)的速度已經(jīng)遠(yuǎn)遠(yuǎn)趕不上機(jī)器
2020-10-29 11:26:51
3414 
什么是機(jī)器學(xué)習(xí)?機(jī)器學(xué)習(xí)是英文名稱MachineLearning(簡稱ML)的直譯。機(jī)器學(xué)習(xí)涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門學(xué)科。
2020-11-12 10:19:12
1203 目前,基于深度學(xué)習(xí)算法的一系列目標(biāo)檢測算法大致可以分為兩大流派: 兩步走(two-stage)算法:先產(chǎn)生候選區(qū)域然后再進(jìn)行CNN分類(RCNN系列) 一步走(one-stage)算法:直接對(duì)輸入
2020-11-27 10:15:56
3193 什么是機(jī)器學(xué)習(xí)?機(jī)器學(xué)習(xí)是英文名稱MachineLearning(簡稱ML)的直譯。機(jī)器學(xué)習(xí)涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門學(xué)科。
2021-01-21 09:29:06
3315 最實(shí)用的機(jī)器學(xué)習(xí)算法Top5 demi 在 周一, 04/01/2019 - 10:35 提交 本文將推薦五種機(jī)器學(xué)習(xí)算法,你應(yīng)該考慮是否將它們投入應(yīng)用。這五種算法覆蓋最常用于聚類、分類、數(shù)值預(yù)測
2021-03-24 16:14:31
5987 為實(shí)現(xiàn)復(fù)雜駕駛環(huán)境下駕駛?cè)藛T疲勞狀態(tài)識(shí)別與預(yù)警,提出基于深度學(xué)習(xí)的疲勞駕駛檢測算法。利用基于 shuffle- channel思想的 MTCNN模型檢測常規(guī)攝像頭實(shí)時(shí)采集的駕駛?cè)藛T人臉圖像
2021-03-30 09:17:55
23 隨著人臉識(shí)別技術(shù)的發(fā)展,人臉欺詐攻擊已經(jīng)成為一項(xiàng)實(shí)際的安全問題,人臉欺詐檢測算法用于及早發(fā)現(xiàn)該類攻擊保護(hù)系統(tǒng)安全。文中將一種經(jīng)典域自適應(yīng)算法擴(kuò)展到深度神經(jīng)網(wǎng)絡(luò)中,首先定義了基于深度特征増廣的域自適應(yīng)
2021-04-15 09:40:35
4 整體框架 目標(biāo)檢測算法主要包括:【兩階段】目標(biāo)檢測算法、【多階段】目標(biāo)檢測算法、【單階段】目標(biāo)檢測算法 什么是兩階段目標(biāo)檢測算法,與單階段目標(biāo)檢測有什么區(qū)別? 兩階段目標(biāo)檢測算法因需要進(jìn)行兩階
2021-04-30 10:22:04
10070 
在移動(dòng)霧計(jì)算中,霧節(jié)點(diǎn)與移動(dòng)終端用戶之間的通信容易受到偽裝攻擊,從而帶來通信和數(shù)據(jù)傳輸?shù)陌踩珕栴}。基于移動(dòng)霧環(huán)境下的物理層密鑰生成策略,提出一種基于強(qiáng)化學(xué)習(xí)的偽裝攻擊檢測算法。構(gòu)建移動(dòng)霧計(jì)算中的偽裝
2021-05-11 11:48:39
5 交通領(lǐng)堿的異常事件檢測對(duì)于預(yù)防和及時(shí)處理交通事故有著重要作用。當(dāng)前大多數(shù)交通異常事件檢測都是通過人工完成的,耗費(fèi)了大量的人力,同時(shí)實(shí)時(shí)性也較差。文中針對(duì)高速公路的交通場景特點(diǎn),利用深度學(xué)習(xí)中的目標(biāo)
2021-05-13 14:45:33
5 針對(duì)無線電干擾中較為突出的同頻干擾問題,將深度學(xué)習(xí)應(yīng)用于干擾信號(hào)檢測,提出一種無線電調(diào)頻廣播同頻干擾檢測算法。將調(diào)頻廣播數(shù)據(jù)轉(zhuǎn)化為能體現(xiàn)信號(hào)特性的小波變換時(shí)頻圖,并將其作為卷積神經(jīng)網(wǎng)絡(luò)(CNN的訓(xùn)練
2021-05-25 16:53:56
9 引言 攝像頭傳統(tǒng)視覺技術(shù)在算法上相對(duì)容易實(shí)現(xiàn),因此已被現(xiàn)有大部分車廠用于輔助駕駛功能。但是隨著自動(dòng)駕駛技術(shù)的發(fā)展,基于深度學(xué)習(xí)的算法開始興起,本期小編就來說說深度視覺算法相關(guān)技術(shù)方面的資料,讓我們
2021-05-27 17:00:35
8192 
針對(duì)人工和傳統(tǒng)自動(dòng)化算法檢測發(fā)動(dòng)機(jī)零件表面缺陷中準(zhǔn)確率和效率低下,無法滿足智能制造需求問題提岀了一種基于深度學(xué)習(xí)的檢測算法。以 Faster r-CNN深度學(xué)習(xí)算法為算法框架,引入聚類理論來確定
2021-06-03 14:51:54
19 基于深度學(xué)習(xí)的行為識(shí)別算法及其應(yīng)用
2021-06-16 14:56:38
20 虛擬機(jī)遷移的物理主機(jī)異常狀態(tài)檢測算法
2021-06-30 11:13:33
20 ③ 數(shù)據(jù)清理——在訓(xùn)練另一個(gè)模型之前從數(shù)據(jù)集中去除異常值。 你可能已經(jīng)注意到,一些不平衡分類的問題也經(jīng)常使用異常檢測算法來解決。例如,垃圾郵件檢測任務(wù)可以被認(rèn)為是一個(gè)分類任務(wù)(垃圾郵件比普通電子郵件少得多),但是
2021-10-25 09:15:02
1397 本文大致介紹將深度學(xué)習(xí)算法模型移植到海思AI芯片的總體流程和一些需要注意的細(xì)節(jié)。海思芯片移植深度學(xué)習(xí)算法模型,大致分為模型轉(zhuǎn)換,...
2022-01-26 19:42:35
11 但是無可否認(rèn)的是深度學(xué)習(xí)實(shí)在太好用啦!極大地簡化了傳統(tǒng)機(jī)器學(xué)習(xí)的整體算法分析和學(xué)習(xí)流程,更重要的是在一些通用的領(lǐng)域任務(wù)刷新了傳統(tǒng)機(jī)器學(xué)習(xí)算法達(dá)不到的精度和準(zhǔn)確率。
2022-04-26 15:07:20
4084 根據(jù)數(shù)據(jù)類型的不同,對(duì)一個(gè)問題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法的學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個(gè)不錯(cuò)的想法,這樣可以讓人們在建模和算法選擇的時(shí)候考慮能根據(jù)輸入數(shù)據(jù)來選擇最合適的算法來獲得最好的結(jié)果。
2022-08-11 11:20:17
1399 源自:AI知識(shí)干貨 根據(jù)數(shù)據(jù)類型的不同,對(duì)一個(gè)問題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法的學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個(gè)不錯(cuò)
2022-08-22 09:57:33
1445 
現(xiàn)在,機(jī)器學(xué)習(xí)有很多算法。如此多的算法,可能對(duì)于初學(xué)者來說,是相當(dāng)不堪重負(fù)的。今天,我們將簡要介紹 10 種最流行的機(jī)器學(xué)習(xí)算法,這樣你就可以適應(yīng)這個(gè)激動(dòng)人心的機(jī)器學(xué)習(xí)世界了!
2022-10-24 10:08:42
1518 本文介紹了 FreeWheel 基于機(jī)器學(xué)習(xí)的業(yè)務(wù)異常檢測實(shí)踐,提煉了從零開始構(gòu)建業(yè)務(wù)異常檢測系統(tǒng)面臨的問題和解決方案,文章介紹了常用的異常檢測算法,比較了不同算法模型的優(yōu)劣,介紹了可擴(kuò)展的異常檢測系統(tǒng)是如何搭建的,希望對(duì)于從事相關(guān)工作的朋友能夠帶來幫助。
2022-10-28 14:35:28
573 中,虹科云科技將探討如何使用機(jī)器學(xué)習(xí)進(jìn)行欺詐檢測、一些最常用的機(jī)器學(xué)習(xí)欺詐檢測算法和最佳實(shí)踐,同時(shí) 虹科云科技將會(huì)在11月1日20:00舉辦免費(fèi)直播,從Redis數(shù)據(jù)庫角度分享企業(yè)欺詐檢測解決方案。 用于欺詐檢測的最佳機(jī)器學(xué)習(xí)
2022-11-01 17:59:48
273 定義神經(jīng)網(wǎng)絡(luò) Neural Networks,簡稱NN。針對(duì)機(jī)器學(xué)習(xí)算法需要領(lǐng)域?qū)<疫M(jìn)行特征工程,模型泛化性能差的問題,提出了NN可以從數(shù)據(jù)的原始特征學(xué)習(xí)特征表示,無需進(jìn)行復(fù)雜的特征處理。
2022-11-03 10:46:35
961 先大致講一下什么是深度學(xué)習(xí)中優(yōu)化算法吧,我們可以把模型比作函數(shù),一種很復(fù)雜的函數(shù):h(f(g(k(x)))),函數(shù)有參數(shù),這些參數(shù)是未知的,深度學(xué)習(xí)中的“學(xué)習(xí)”就是通過訓(xùn)練數(shù)據(jù)求解這些未知的參數(shù)。
2023-02-13 15:31:48
1019 
在學(xué)習(xí)機(jī)器學(xué)習(xí)算法的過程中,我們經(jīng)常需要數(shù)據(jù)來驗(yàn)證算法,調(diào)試參數(shù)。
2023-03-15 09:07:48
360 ? 一、機(jī)器學(xué)習(xí)基礎(chǔ)概念 ? 關(guān)于數(shù)據(jù) ? 機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。 ? Iris 鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)和機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被用作示例。數(shù)據(jù)
2023-05-28 11:29:41
652 
優(yōu)化算法一直以來是機(jī)器學(xué)習(xí)能根據(jù)數(shù)據(jù)學(xué)到知識(shí)的核心技術(shù)。而好的優(yōu)化算法可以大大提高學(xué)習(xí)速度,加快算法的收斂速度和效果。該論文從淺層模型到深度模型縱覽監(jiān)督學(xué)習(xí)中常用的優(yōu)化算法,并指出了每一種優(yōu)化算法
2023-06-15 11:20:22
395 
,也是近年來理論研究的熱點(diǎn)。作為計(jì)算機(jī)視覺中的基礎(chǔ)算法,目標(biāo)檢測對(duì)后續(xù)的人臉識(shí)別、目標(biāo)跟蹤、實(shí)例分割等任務(wù)都起著至關(guān)重要的作用。 基于深度學(xué)習(xí)的卷積學(xué)習(xí)網(wǎng)絡(luò)(CNN)在目標(biāo)檢測任務(wù)上取得了優(yōu)越的性能,例如FasterRCNN、
2023-06-25 10:37:48
357 
摘要:基于強(qiáng)化學(xué)習(xí)的目標(biāo)檢測算法在檢測過程中通常采用預(yù)定義搜索行為,其產(chǎn)生的候選區(qū)域形狀和尺寸變化單一,導(dǎo)致目標(biāo)檢測精確度較低。為此,在基于深度強(qiáng)化學(xué)習(xí)的視覺目標(biāo)檢測算法基礎(chǔ)上,提出聯(lián)合回歸與深度
2023-07-19 14:35:02
0 深度學(xué)習(xí)算法簡介 深度學(xué)習(xí)算法是什么?深度學(xué)習(xí)算法有哪些?? 作為一種現(xiàn)代化、前沿化的技術(shù),深度學(xué)習(xí)已經(jīng)在很多領(lǐng)域得到了廣泛的應(yīng)用,其能夠不斷地從數(shù)據(jù)中提取最基本的特征,從而對(duì)大量的信息進(jìn)行機(jī)器學(xué)習(xí)
2023-08-17 16:02:56
6007 深度學(xué)習(xí)算法工程師是做什么 深度學(xué)習(xí)算法工程師是一種高級(jí)技術(shù)人才,是數(shù)據(jù)科學(xué)中創(chuàng)新的推動(dòng)者,也是實(shí)現(xiàn)人工智能應(yīng)用的重要人才。他們致力于開發(fā)和實(shí)現(xiàn)深度機(jī)器學(xué)習(xí)算法來解決各種現(xiàn)實(shí)問題,應(yīng)用于各個(gè)領(lǐng)域
2023-08-17 16:03:01
725 什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用 深度學(xué)習(xí)算法被認(rèn)為是人工智能的核心,它是一種模仿人類大腦神經(jīng)元的計(jì)算模型。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一種變體,主要通過變換各種架構(gòu)來對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí)以及分類處理
2023-08-17 16:03:04
1301 深度學(xué)習(xí)算法的選擇建議 隨著深度學(xué)習(xí)技術(shù)的普及,越來越多的開發(fā)者將它應(yīng)用于各種領(lǐng)域,包括圖像識(shí)別、自然語言處理、聲音識(shí)別等等。對(duì)于剛開始學(xué)習(xí)深度學(xué)習(xí)的開發(fā)者來說,選擇適合自己的算法和框架是非
2023-08-17 16:11:05
342 深度學(xué)習(xí)算法庫框架學(xué)習(xí) 深度學(xué)習(xí)是一種非常強(qiáng)大的機(jī)器學(xué)習(xí)方法,它可以用于許多不同的應(yīng)用程序,例如計(jì)算機(jī)視覺、語言處理和自然語言處理。然而,實(shí)現(xiàn)深度學(xué)習(xí)技術(shù)需要使用一些算法庫框架。在本文中,我們將探討
2023-08-17 16:11:07
412 深度學(xué)習(xí)算法mlp介紹? 深度學(xué)習(xí)算法是人工智能領(lǐng)域的熱門話題。在這個(gè)領(lǐng)域中,多層感知機(jī)(multilayer perceptron,MLP)模型是一種常見的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。MLP通過多個(gè)層次的非線性
2023-08-17 16:11:11
2314 深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)重要分支,多年來深度學(xué)習(xí)一直在各個(gè)領(lǐng)域的應(yīng)用中發(fā)揮著極其重要的作用,成為了人工智能技術(shù)的重要組成部分。許多深度學(xué)習(xí)算法和框架提供
2023-08-17 16:11:26
638 機(jī)器學(xué)習(xí)算法的5種基本算子 機(jī)器學(xué)習(xí)是一種重要的人工智能技術(shù),它是為了讓計(jì)算機(jī)能夠通過數(shù)據(jù)自主的學(xué)習(xí)和提升能力而發(fā)明的。機(jī)器學(xué)習(xí)算法是機(jī)器學(xué)習(xí)的核心,它是指讓計(jì)算機(jī)從數(shù)據(jù)中進(jìn)行自主學(xué)習(xí)并且可以實(shí)現(xiàn)
2023-08-17 16:11:46
1245 機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型 機(jī)器學(xué)習(xí)是人工智能的分支之一,它通過分析和識(shí)別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來的決策和預(yù)測。在機(jī)器學(xué)習(xí)中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48
632 機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是什么?機(jī)器學(xué)習(xí)算法優(yōu)缺點(diǎn)? 機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是一種能夠從數(shù)據(jù)中自動(dòng)學(xué)習(xí)的算法。它能夠從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)特征,進(jìn)而對(duì)未知數(shù)據(jù)進(jìn)行分類、回歸、聚類等任務(wù)。通過
2023-08-17 16:11:50
939 機(jī)器學(xué)習(xí)算法入門 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對(duì)比 機(jī)器學(xué)習(xí)算法入門、介紹和對(duì)比 隨著機(jī)器學(xué)習(xí)的普及,越來越多的人想要了解和學(xué)習(xí)機(jī)器學(xué)習(xí)算法。在這篇文章中,我們將會(huì)簡單介紹機(jī)器學(xué)習(xí)算法的基本概念
2023-08-17 16:27:15
569 (VSM)算法計(jì)算相似性。本文將從以下幾個(gè)方面介紹機(jī)器學(xué)習(xí)vsm算法。 1、向量空間模型 向量空間模型是一種常見的文本表示方法,根據(jù)文本的詞頻向量將文本映射到一個(gè)高維向量空間中。這種方法在信息檢索中被廣泛使用,可以使用余弦相
2023-08-17 16:29:35
529 機(jī)器學(xué)習(xí)有哪些算法?機(jī)器學(xué)習(xí)分類算法有哪些?機(jī)器學(xué)習(xí)預(yù)判有哪些算法? 機(jī)器學(xué)習(xí)是一種人工智能技術(shù),通過對(duì)數(shù)據(jù)的分析和學(xué)習(xí),為計(jì)算機(jī)提供智能決策。機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)機(jī)器學(xué)習(xí)的基礎(chǔ)。常見的機(jī)器學(xué)習(xí)算法
2023-08-17 16:30:11
1245 浪費(fèi)大量的人力成本。因此,越來越多的工程師開始將深度學(xué)習(xí)算法引入缺陷檢測領(lǐng)域,因?yàn)?b class="flag-6" style="color: red">深度學(xué)習(xí)在特征提取和定位方面取得了非常好的效果。
2023-09-22 12:19:00
449 
評(píng)論