女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電鏡中的垃圾變黃金—深度神經(jīng)網(wǎng)絡

ExMh_zhishexues ? 來源:YXQ ? 2019-06-03 17:12 ? 次閱讀

近十年來,掃描探針、電子顯微鏡和光學顯微鏡的光譜成像方法發(fā)展迅速,導致了大型多維數(shù)據(jù)集的興起。在許多情況下,將高光譜數(shù)據(jù)降維到較低維度的材料特征參數(shù),要依賴功能擬合,雖然擬合函數(shù)的近似形式是已知的,但函數(shù)的參數(shù)卻是需要人為確定的。然而,通過迭代方法實現(xiàn)噪聲數(shù)據(jù)的功能擬合(如最小二乘梯度下降),常常會出現(xiàn)虛假結(jié)果。

來自美國橡樹林國家實驗室的Stephen Jesse領(lǐng)導的團隊,提出了一種新的方法,可用來逆向解決問題,可從基于光譜成像數(shù)據(jù)的最小二乘擬合中提取物理模型參數(shù),并能通過深度學習測定先驗參數(shù)而增強提取能力。他們將這種方法應用于從壓電響應力顯微鏡數(shù)據(jù)中提取簡諧振子參數(shù),并證明了通過結(jié)合使用深度神經(jīng)網(wǎng)絡和最小二乘擬合,可以探測比傳統(tǒng)方法低一個數(shù)量級的信號響應,接近激發(fā)信號的熱限制。作為模型系統(tǒng),他們演示了從層狀鐵電化合物的帶激發(fā)壓電響應力顯微鏡成像中,提取阻尼簡諧振子參數(shù)。這種使用深度神經(jīng)網(wǎng)絡的方法是通用的,并且在正向和反向情況下都顯示出它們作為函數(shù)近似器的效用,且它們在嘈雜的環(huán)境中工作良好。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 探針
    +關(guān)注

    關(guān)注

    4

    文章

    219

    瀏覽量

    20885
  • 深度神經(jīng)網(wǎng)絡

    關(guān)注

    0

    文章

    62

    瀏覽量

    4673

原文標題:npj: 電鏡中的垃圾變黃金—深度神經(jīng)網(wǎng)絡

文章出處:【微信號:zhishexueshuquan,微信公眾號:知社學術(shù)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Ba
    的頭像 發(fā)表于 02-12 15:15 ?721次閱讀

    FPGA在深度神經(jīng)網(wǎng)絡中的應用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-24 10:42 ?1107次閱讀

    殘差網(wǎng)絡深度神經(jīng)網(wǎng)絡

    殘差網(wǎng)絡(Residual Network,通常簡稱為ResNet) 是深度神經(jīng)網(wǎng)絡的一種 ,其獨特的結(jié)構(gòu)設(shè)計在解決深層網(wǎng)絡訓練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為
    的頭像 發(fā)表于 07-11 18:13 ?1513次閱讀

    簡單認識深度神經(jīng)網(wǎng)絡

    深度神經(jīng)網(wǎng)絡(Deep Neural Networks, DNNs)作為機器學習領(lǐng)域中的一種重要技術(shù),特別是在深度學習領(lǐng)域,已經(jīng)取得了顯著的成就。它們通過模擬人類大腦的處理方式,利用多層神經(jīng)
    的頭像 發(fā)表于 07-10 18:23 ?1839次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡還是循環(huán)神經(jīng)網(wǎng)絡

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡,而非遞歸神經(jīng)網(wǎng)絡。循環(huán)神經(jīng)網(wǎng)絡是一種具有時間序列特性的神經(jīng)網(wǎng)絡,能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?947次閱讀

    深度神經(jīng)網(wǎng)絡概述及其應用

    深度神經(jīng)網(wǎng)絡(Deep Neural Networks, DNNs)作為機器學習的一種復雜形式,是廣義人工神經(jīng)網(wǎng)絡(Artificial Neural Networks, ANNs)的重要分支。它們
    的頭像 發(fā)表于 07-04 16:08 ?2688次閱讀

    循環(huán)神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是深度學習領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-04 14:24 ?1931次閱讀

    深度神經(jīng)網(wǎng)絡與基本神經(jīng)網(wǎng)絡的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(通常指傳統(tǒng)神經(jīng)網(wǎng)絡或前向神經(jīng)網(wǎng)絡)的區(qū)別時,我們需
    的頭像 發(fā)表于 07-04 13:20 ?1667次閱讀

    深度神經(jīng)網(wǎng)絡的設(shè)計方法

    深度神經(jīng)網(wǎng)絡(Deep Neural Networks, DNNs)作為人工智能領(lǐng)域的重要技術(shù)之一,通過模擬人腦神經(jīng)元之間的連接,實現(xiàn)了對復雜數(shù)據(jù)的自主學習和智能判斷。其設(shè)計方法不僅涉及網(wǎng)絡
    的頭像 發(fā)表于 07-04 13:13 ?944次閱讀

    卷積神經(jīng)網(wǎng)絡與循環(huán)神經(jīng)網(wǎng)絡的區(qū)別

    深度學習領(lǐng)域,卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?5352次閱讀

    bp神經(jīng)網(wǎng)絡深度神經(jīng)網(wǎng)絡

    BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡,它使用反向傳播算法來訓練網(wǎng)絡。雖然BP神經(jīng)網(wǎng)絡在某些方面與
    的頭像 發(fā)表于 07-03 10:14 ?1299次閱讀

    卷積神經(jīng)網(wǎng)絡訓練的是什么

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡的基本概念、結(jié)構(gòu)
    的頭像 發(fā)表于 07-03 09:15 ?857次閱讀

    深度學習與卷積神經(jīng)網(wǎng)絡的應用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學習和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個領(lǐng)域取得了顯著的應用成果。從圖像識別、語音識別
    的頭像 發(fā)表于 07-02 18:19 ?1355次閱讀

    卷積神經(jīng)網(wǎng)絡和bp神經(jīng)網(wǎng)絡的區(qū)別

    化能力。隨著深度學習技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?5911次閱讀

    深度神經(jīng)網(wǎng)絡模型有哪些

    深度神經(jīng)網(wǎng)絡(Deep Neural Networks,DNNs)是一類具有多個隱藏層的神經(jīng)網(wǎng)絡,它們在許多領(lǐng)域取得了顯著的成功,如計算機視覺、自然語言處理、語音識別等。以下是一些常見的深度
    的頭像 發(fā)表于 07-02 10:00 ?2311次閱讀