女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器學習中的相關概念、數學知識和各種經典算法

電子工程師 ? 來源:lp ? 2019-03-15 14:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,來自SAP(全球第一大商業軟件公司)的梁勁(Jim Liang)公開了自己所寫的一份 520 頁的學習教程(英文版),詳細、明了地介紹了機器學習中的相關概念、數學知識和各種經典算法。機器之心看到后,也迫不及待的推廣給更多的讀者。完整的 PDF 請從文后作者公開的鏈接下載。

在介紹中,Jim Liang寫到:

人工智能是這兩年風頭正勁的領域,也是未來具有顛覆性可能的新領域。不少人嘗試去學習機器學習相關的知識。然而,一旦越過最初的 overview 階段,很多人就開始打退堂鼓了,然后迅速放棄。

為什么會這樣?

極 高 的 學 習 曲 線

首當其沖就是數學,涉及統計學、微積分、概率、線性代數等,大家雖然都學過高等數學,但如果你還記得里面的細節,算你牛。更可能的情況是,多數人都對高等數學忘記了,面對各種算法里的大量公式,感到厭惡,甚至恐懼。

其次因為機器學習本身是一個綜合性學科,而且是一個快速發展的學科,知識點散亂,缺乏系統性。

市面上的機器學習/深度學習書籍、文章、教程,遍地開花,但能以清晰的方式表達、循序漸進地講解的教程,其實不多,大量的教程沒有考慮到學習者的基礎,使得初學者感到挫敗和困惑。

圖 解 機 器 學 習

正是對機器學習的過程中的痛苦有切身體會,我希望能做一份教程,以淺顯易懂的方式去講解它,降低大家的學習門檻。我為此花費了數月時間,經常做到深夜,把自己的學習筆記整理成了這份教程。

從結構來看,全部教程包含兩部分:

Part 1 介紹了基本概念,包括:

機器學習的流程

數據處理

建模

評估指標(如 MSE、ROC 曲線)

模型部署

過度擬合

正則化等

在第一部分,作者先介紹了如今應用普遍的機器學習:從自動駕駛、語音助手到機器人。其中有些思想,也是眾多讀者們了解過的,例如:為何機器學習在這個時候會火(大數據、計算力、更好的算法);機器學習、人工智能、深度學習三者的關系等。

除了這些基礎概念,這份教程也對機器學習模型的開發流程做了圖像化展示(如下圖),即使對此不太了解的讀者,也能通過這種流程展示有所學習。

建立機器學習解決方案的步驟

在 Part1 的其他小節,作者以類似的圖像展示,對數據、建模、模型部署等內容做了詳細介紹,這里就不一一列舉,可以從原報告查看。

在 Part2,作者介紹了 常用的算法,包括:

線性回歸

邏輯回歸

神經網絡

SVM

Knn

K-Means

決策樹

隨機森林

AdaBoost

樸素貝葉斯

梯度下降

主成分分析

這部分包含了大量的數學公式,但作者盡力注解了其中的每個公式,從而充分、清晰地表達了眾多數學概念。

例如在「神經網絡」部分,作者整理了 59 頁的筆記(從 311 頁到 369 頁)。作者從人腦中的神經元架構說起,介紹了人工神經網絡(ANN)、人工神經元工作的原理。這份筆記非常注重圖像化的概念解釋,理解起來非常直觀。

例如,下圖中的概念解釋很形象地展現了生物神經元和人工神經元工作方式的相似性。

生物神經元的樹突輸入-軸突輸出模式和人工神經元的輸入輸出模式對比。

過擬合的解釋。

人工神經元的基礎結構。

在涉及到數學公式時,作者會在旁邊有詳細的注解,如下圖所示:

對于并列的可選項(如激活函數、常用神經網絡架構等),也會有全面的列表:

常用的激活函數。

然后會有每個激活函數的單獨介紹:

Sigmoid 激活函數。

用神經網絡分類手寫數字的前向傳播示例(softmax 激活函數)。

對于神經網絡中較為復雜的概念(如求導、反向傳播),幾張圖就能解釋清楚:

關于神經網絡的完整訓練過程,作者用簡略流程圖+計算細節展開的方式呈現:

反向傳播算法完整流程。

前向傳播部分的計算細節。

就像前面提到的,這部分除了「神經網絡」的介紹,還包括隨機森林、梯度下降等概念的介紹,讀者們可查看原教程。

總結

看完這份教程之后,小編覺得這是一份包羅萬象的學習筆記,既適合非專業人士了解有關機器學習的基礎概念,又適合有專業背景的學生進一步學習。

寫教程是為了自己持續學習,分享教程是為了幫助更多人學習。就像作者所說,「Learning by doing/teaching, 寫這個教程主要是強迫自己持續學習,另外,也想分享給他人,希望能幫助到更多想學習 Machine Learning 的人,降低大家的學習痛苦。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4812

    瀏覽量

    103303
  • 人工智能
    +關注

    關注

    1806

    文章

    48940

    瀏覽量

    248360
  • 機器學習
    +關注

    關注

    66

    文章

    8499

    瀏覽量

    134409

原文標題:520頁的機器學習筆記

文章出處:【微信號:machine_vision_1,微信公眾號:機器視覺智能檢測】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    【「# ROS 2智能機器人開發實踐」閱讀體驗】視覺實現的基礎算法的應用

    人部署,詳細介紹了基于顏色閾值和深度學習的巡線方法。 二維碼識別則廣泛應用于機器人定位與任務觸發,例如AGV(自動導引車)的路徑規劃。 深度學習機器人視覺
    發表于 05-03 19:41

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發表于 03-13 07:34

    人工智能和機器學習以及Edge AI的概念與應用

    與人工智能相關各種技術的概念介紹,以及先進的Edge AI(邊緣人工智能)的最新發展與相關應用。 人工智能和機器
    的頭像 發表于 01-25 17:37 ?890次閱讀
    人工智能和<b class='flag-5'>機器</b><b class='flag-5'>學習</b>以及Edge AI的<b class='flag-5'>概念</b>與應用

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法知識,需要搭建一個學習環境,所以就在最近購買的
    的頭像 發表于 01-02 13:43 ?509次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統機器學習方法和應用指導

    在上一篇文章,我們介紹了機器學習的關鍵概念術語。在本文中,我們會介紹傳統機器學習的基礎
    的頭像 發表于 12-30 09:16 ?1126次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    《具身智能機器人系統》第1-6章閱讀心得之具身智能機器人系統背景知識與基礎模塊

    搜索策略等規劃算法,強調了軌跡規劃需要考慮機器人的運動學約束。在軌跡規劃機器人需要同時考慮最大曲率、加速度限制等物理約束,生成平滑可行的運動軌跡。強化
    發表于 12-19 22:26

    自然語言處理與機器學習的關系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個核心領域,它使計算機能夠從數據中學習并做出預測或決策。自然語言處理與機器學習之間有著密切的關系,因為機器
    的頭像 發表于 12-05 15:21 ?1921次閱讀

    NPU與機器學習算法的關系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設計目標是提高機器學習
    的頭像 發表于 11-15 09:19 ?1162次閱讀

    【「時間序列與機器學習」閱讀體驗】時間序列的信息提取

    。 時間序列的單調性理論是數學求導。下面是使用EWMA分析股票價格變動,以決定買入還是賣出。通過仿真數據,這種指數移動平均的技術剔除了短期波動,有助看清股票整體趨勢。 通過對本章學習,對時間序列的研究目的、方法與特征有了較全面梳理了解。其中代碼仿真更可以輔助我們更好掌
    發表于 08-17 21:12

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎理論出發,逐步深入到機器學習算法在時間序列預測的應用,內容全面,循序漸進。每一章都經過精心設計,對理論知識進行了
    發表于 08-12 11:28

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    時間序列的自相關性。 時間序列有基于線性場景,也有一些非線性性質周期性和不對稱性、波動的聚集性、波動中出現的跳躍現象,以及時間的不可逆性。機器學習已經是目前非線性時序分析的主攻方向之
    發表于 08-07 23:03

    【《大語言模型應用指南》閱讀體驗】+ 基礎篇

    的內容,閱讀雖慢,但在這一學習過程也掌握了許多新知識,為后續章節的閱讀打下基礎,這是一個快樂的學習過程。 基礎篇從人工智能的起源講起,提出了機器
    發表于 07-25 14:33

    如何理解機器學習的訓練集、驗證集和測試集

    理解機器學習的訓練集、驗證集和測試集,是掌握機器學習核心概念和流程的重要一步。這三者不僅構成了
    的頭像 發表于 07-10 15:45 ?6740次閱讀

    機器學習的數據預處理與特征工程

    機器學習的整個流程,數據預處理與特征工程是兩個至關重要的步驟。它們直接決定了模型的輸入質量,進而影響模型的訓練效果和泛化能力。本文將從數據預處理和特征工程的基本概念出發,詳細探討這
    的頭像 發表于 07-09 15:57 ?1382次閱讀

    遷移學習的基本概念和實現方法

    遷移學習(Transfer Learning)是機器學習領域中的一個重要概念,其核心思想是利用在一個任務或領域中學到的知識來加速或改進另一個
    的頭像 發表于 07-04 17:30 ?3440次閱讀