女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

TL-GAN:控制合成和編輯的高效方法

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-10-31 09:03 ? 次閱讀

人類可以輕松地描述一幅圖像,在機(jī)器學(xué)習(xí)中,這種任務(wù)就被看成是判別分類/回歸問題,即從輸入的圖像中預(yù)測(cè)特征標(biāo)簽。機(jī)器學(xué)習(xí)技術(shù)最近的進(jìn)步中,尤其是深度學(xué)習(xí)模型都開始解決這類任務(wù),有些能達(dá)到甚至超過人類水平.

但是,根據(jù)文字?jǐn)⑹錾杀普娴膱D片難度較大,需要進(jìn)行很多年的圖形設(shè)計(jì)訓(xùn)練。在機(jī)器學(xué)習(xí)領(lǐng)域,這是一種生成任務(wù),比判別式任務(wù)更有挑戰(zhàn)性,因?yàn)樯赡P托枰鶕?jù)更小的輸入產(chǎn)出更豐富的信息。

雖然生成模型在創(chuàng)建時(shí)有很多困難,但是在以下幾種情況下非常有用:

內(nèi)容創(chuàng)造:比如一家廣告公司可以自動(dòng)生成吸引人的產(chǎn)品圖像、一位時(shí)尚設(shè)計(jì)師可以讓算法生成他所希望的鞋子樣式,再?gòu)闹刑暨x符合要求的作品,或者一項(xiàng)游戲可以讓玩家根據(jù)簡(jiǎn)單的描述創(chuàng)造逼真的人物形象。

根據(jù)內(nèi)容智能編輯:有了這種模型,攝像師只需要點(diǎn)擊鼠標(biāo)就可以改變圖像的面部表情、皺紋和發(fā)型;電影制作者可以將陰天背景改為晴天。

數(shù)據(jù)增強(qiáng):自動(dòng)駕駛公司可以生成合成特殊場(chǎng)景的逼真圖像,增強(qiáng)訓(xùn)練數(shù)據(jù)集;信用卡公司可以合成特殊的欺詐數(shù)據(jù),增強(qiáng)欺詐探測(cè)系統(tǒng)中的數(shù)據(jù)集。

在這篇文章中,我將介紹我們最近的研究成果,稱為透明隱空間GAN(TL-GAN),它擴(kuò)展了目前先進(jìn)的模型,提出了一種新的交互方式。關(guān)于GAN的基礎(chǔ)介紹,論智君就不在此詳細(xì)展開了,我們?cè)?jīng)寫過很多相關(guān)文章,感興趣的讀者可以閱讀:從零學(xué)習(xí):生成敵對(duì)網(wǎng)絡(luò)(GAN)入門指南。

控制GAN模型的輸出

GAN的最初形式和其他的幾種主流形式(例如DC-GAN和pg-GAN)都是無監(jiān)督的學(xué)習(xí)模型。經(jīng)過訓(xùn)練后,生成網(wǎng)絡(luò)會(huì)將隨機(jī)噪聲看作輸入,生成類似照片一樣的逼真圖像,基本上辨別不出到底是訓(xùn)練集中的樣本,還是真實(shí)圖像。然而,我們無法進(jìn)一步控制產(chǎn)生的圖像的特點(diǎn),在很多應(yīng)用中,用戶想根據(jù)自己的偏好定制樣本(例如年齡、頭發(fā)顏色、面部表情等等),最好還能對(duì)這些特征不斷調(diào)整。

為了實(shí)現(xiàn)這種控制生成的效果,很多GAN的變體都做出了嘗試,它們大致可以分為兩類:風(fēng)格遷移網(wǎng)絡(luò)和條件生成器。

風(fēng)格遷移網(wǎng)絡(luò)

以CycleGAN和pix2pix為代表的風(fēng)格遷移網(wǎng)絡(luò)是將圖像從一個(gè)領(lǐng)域轉(zhuǎn)移到另一個(gè)領(lǐng)域的模型(例如將馬變成斑馬,將素描畫編程帶有顏色的圖像)。結(jié)果是,我們無法在兩個(gè)獨(dú)立的狀態(tài)之間對(duì)一種特征進(jìn)行調(diào)整(例如在面部添加一點(diǎn)點(diǎn)胡子)。同時(shí),一個(gè)網(wǎng)絡(luò)只能應(yīng)用于一種類型的遷移,所以如果要調(diào)整10個(gè)特征,就要建立10個(gè)不同的網(wǎng)絡(luò)。

條件生成器

以條件GAN、AC-GAN和Stack-GAN為代表的條件生成器是可以在訓(xùn)練期間,互相聯(lián)合學(xué)習(xí)帶有特征標(biāo)簽的圖像的模型,從而生成帶有定制特點(diǎn)的圖像。所以當(dāng)你想要在生成過程中添加新的可調(diào)整特征時(shí),你就需要重新訓(xùn)練整個(gè)GAN模型,這就需要花費(fèi)大量計(jì)算資源和時(shí)間。除此之外,整個(gè)過程只需要一個(gè)數(shù)據(jù)集,其中要包含所有自定義特征標(biāo)簽。

我們的TL-GAN模型,從新的角度控制生成任務(wù),解決了現(xiàn)有的問題。它可以讓用戶用單一網(wǎng)絡(luò)逐步調(diào)整一個(gè)或多個(gè)特征。另外,用戶也可以在一個(gè)小時(shí)內(nèi)添加新的可調(diào)整的特征。

TL-GAN:控制合成和編輯的高效方法

將隱藏空間透明化

英偉達(dá)的pg-GAN是可以生成高分辨率人臉圖像的的模型,生成的1024×1024圖像都是由隱藏空間中的一個(gè)512維度的噪聲向量決定所有的特征。所以,如果我們能理解隱藏空間表示什么,即讓它透明化,我們就能完全掌握生成過程。

在使用pg-GAN進(jìn)行預(yù)訓(xùn)練之后,我發(fā)現(xiàn)隱藏空間有兩個(gè)優(yōu)點(diǎn):

空間中的大部分點(diǎn)都能生成可靠的圖像;

它非常連貫,說明隱藏空間中兩點(diǎn)之間的插值會(huì)在引起對(duì)應(yīng)圖像之間平穩(wěn)的過渡。

知道了這兩個(gè)特點(diǎn),我認(rèn)為在隱藏空間中是可以找到可預(yù)測(cè)特征方向的。如果能實(shí)現(xiàn)的話,我們可以利用這些方向的單位向量作為特征軸,控制生成過程。

方法:特征軸的提出

為了找到隱藏空間中的特征軸,我們會(huì)在隱藏向量z和特征標(biāo)簽y之間建立連接,其中會(huì)用到在成對(duì)的數(shù)據(jù)(z,y)上訓(xùn)練的監(jiān)督式學(xué)習(xí)方法。目前的問題就成了如何得到成對(duì)的數(shù)據(jù)?,F(xiàn)存的數(shù)據(jù)集只含有圖像x和它們對(duì)應(yīng)的特征標(biāo)簽y。

連接隱藏向量z和特征標(biāo)簽y的方法

可用方法

其中一種方法是從現(xiàn)有的帶有標(biāo)簽的數(shù)據(jù)集中計(jì)算圖像xreal相對(duì)應(yīng)的隱藏向量。但是GAN網(wǎng)絡(luò)在計(jì)算zencode=G^(-1)(x_real)的時(shí)候比較困難,所以這一方法難以實(shí)現(xiàn)。

另外一種方法是從隨機(jī)隱藏向量z中生成合成圖像x_gen,這里的問題是,合成的圖像是沒有標(biāo)簽的,我們也不能輕易地使用可用標(biāo)簽數(shù)據(jù)集。

為了解決這一問題,關(guān)鍵就是訓(xùn)練一個(gè)獨(dú)立的特征提取器——模型y=F(x),利用現(xiàn)有的帶有標(biāo)簽的圖像數(shù)據(jù)集(xreal,yreal),之后將特征提取網(wǎng)絡(luò)F與GAN的生成器G結(jié)合。完成后,我們可以預(yù)測(cè)合成圖像xgen的特征標(biāo)簽ypred,從而在z和y之間建立起連接。

現(xiàn)在我們有了成對(duì)的隱藏向量和特征,我們可以訓(xùn)練一個(gè)回歸模型y=A(z),來得出控制圖像生成過程的所有特征軸。

TL-GAN模型架構(gòu)

如圖,TL-GAN模型中包含五步:

學(xué)習(xí)分布:選擇一個(gè)訓(xùn)練好的GAN模型和生成器網(wǎng)絡(luò),我選的是經(jīng)過訓(xùn)練的pg-GAN,它能生成質(zhì)量最高的人臉圖像。

分類:選擇一個(gè)預(yù)訓(xùn)練特征提取模型(可以使一個(gè)卷積神經(jīng)網(wǎng)絡(luò)或其他計(jì)算機(jī)視覺模型),或者用經(jīng)過標(biāo)記的數(shù)據(jù)集訓(xùn)練自己的特征提取網(wǎng)絡(luò)。

生成:生成多個(gè)隨機(jī)隱藏向量,將它們輸入到訓(xùn)練過的GAN生成器中,生成合成圖像,然后用一個(gè)訓(xùn)練過的特征提取器,為每張圖像生成特征。

聯(lián)系:用一個(gè)通用的線性模型(GLM)在隱藏向量和特征之間執(zhí)行回歸。回歸斜率就是特征軸。

探索:從一個(gè)隱藏向量開始,移動(dòng)到其他特征軸上,檢查這是如何影響圖像的生成的。

這一過程效率很高,一旦我們有了預(yù)訓(xùn)練GAN模型,確定特征軸只需要在一個(gè)GPU上花費(fèi)一個(gè)小時(shí)的時(shí)間。

結(jié)果

讓我們看看這一模型的效果如何。首先我測(cè)試了特征軸能否被用于控制相對(duì)應(yīng)的生成圖像特征之上。結(jié)果如下,這一過程非常不錯(cuò)!圖像的性別、年齡都能得到“完美”改變:

但上面的案例顯示出了一個(gè)缺點(diǎn),當(dāng)我想要減少胡子的數(shù)量時(shí),不可避免地會(huì)讓人臉更加“女性化”。這一問題是由于性別特征和胡須特征是相關(guān)聯(lián)的,改變其中一個(gè)就會(huì)導(dǎo)致另一個(gè)發(fā)生改變。

為了解決這一問題,我用到了線性代數(shù)方法,將代表胡須的軸投射到與性別軸正交的其他方向,有效地消除了二者的相關(guān)性。

最后用動(dòng)圖了解下TL-GAN在控制圖像生成過程時(shí)的速度:

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1092

    瀏覽量

    40996
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    19

    文章

    2172

    瀏覽量

    76093
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8488

    瀏覽量

    134010

原文標(biāo)題:TL-GAN:可以定制人臉圖像的高質(zhì)量模型

文章出處:【微信號(hào):jqr_AI,微信公眾號(hào):論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    GAN應(yīng)用缺陷的解決方法分享

    盡管 GAN 領(lǐng)域的進(jìn)步令人印象深刻,但其在應(yīng)用過程中仍然存在一些困難。本文梳理了 GAN 在應(yīng)用過程中存在的一些難題,并提出了最新的解決方法
    的頭像 發(fā)表于 02-22 09:44 ?8158次閱讀
    <b class='flag-5'>GAN</b>應(yīng)用缺陷的解決<b class='flag-5'>方法</b>分享

    電壓放大器在合成射流高效摻混機(jī)理研究中的應(yīng)用

     實(shí)驗(yàn)名稱:功率放大器在合成射流高效摻混機(jī)理研究中的應(yīng)用   實(shí)驗(yàn)內(nèi)容:合成射流是一種新型主動(dòng)流動(dòng)控制技術(shù),其主要工作原理是利用振動(dòng)薄膜或活塞周期性地吹/吸流體,在孔口外形成渦環(huán),這些
    發(fā)表于 03-08 17:47

    GaN已為數(shù)字電源控制做好準(zhǔn)備

    。我會(huì)讓您自己決定哪些東西是正確的。因此,當(dāng)我說“GaN已為數(shù)字電源控制做好準(zhǔn)備”時(shí),您懂我的意思嗎?測(cè)試GaN的一種方法是查看采用GaN
    發(fā)表于 08-30 15:05

    GaN已經(jīng)為數(shù)字電源控制做好準(zhǔn)備

    技術(shù)了。這也意味著GaN已經(jīng)是一項(xiàng)成熟的、不應(yīng)再受到質(zhì)疑的技術(shù)。對(duì)此,我不想妄加評(píng)論,由你自己去辨別事情的真?zhèn)?。那么,我提到的?b class='flag-5'>GaN已經(jīng)為數(shù)字電源控制做好準(zhǔn)備”到底是什么意思呢?驗(yàn)證這一點(diǎn)的
    發(fā)表于 09-06 15:31

    基于GaN高效率CrM圖騰柱PFC轉(zhuǎn)換器包括BOM及層圖

    描述高頻臨界導(dǎo)電模式 (CrM) 圖騰柱功率因數(shù)校正 (PFC) 是一種使用 GaN 設(shè)計(jì)高密度功率解決方案的簡(jiǎn)便方法。TIDA-0961 參考設(shè)計(jì)使用 TI 的 600V GaN 功率級(jí)
    發(fā)表于 10-25 11:49

    如何精確高效的完成GaN PA中的I-V曲線設(shè)計(jì)?

    GaN PA 設(shè)計(jì)?)后,了解I-V 曲線(亦稱為電流-電壓特性曲線)是一個(gè)很好的起點(diǎn)。本篇文章探討I-V 曲線的重要性,及其在非線性GaN 模型(如Modelithics Qorvo GaN 庫(kù)里的模型)中的表示如何精確
    發(fā)表于 07-31 06:44

    請(qǐng)問GaN器件和AMO技術(shù)能否實(shí)現(xiàn)高效率和寬帶寬?

    請(qǐng)問一下GaN器件和AMO技術(shù)能實(shí)現(xiàn)高效率和寬帶寬嗎?
    發(fā)表于 04-19 09:22

    使用高頻高效LLC模塊基于GaN功率集成電路的CPRS變壓器

    基于平面矩陣的高頻高效LLC模塊基于GaN功率集成電路的CPRS變壓器
    發(fā)表于 06-16 06:48

    高效GaN微波功率模塊

    國(guó)產(chǎn)高效GaN微波功率模塊,HEG001D、HEG205B等。針對(duì)寬帶、高功率微波系統(tǒng)及有源相控陣?yán)走_(dá)應(yīng)用需求,最新推出小型化高功率GaN功率模塊,采用先進(jìn)的平面內(nèi)匹配合成技術(shù),基于成
    發(fā)表于 11-26 15:44 ?14次下載

    EditGAN圖像編輯框架將影響未來幾代GAN的發(fā)展

      此外, EditGAN 框架可能會(huì)影響未來幾代 GAN 的發(fā)展。雖然當(dāng)前版本的 EditGAN 側(cè)重于圖像編輯,但類似的方法也可能用于編輯 3D 形狀和對(duì)象,這在為游戲、電影或 m
    的頭像 發(fā)表于 04-06 16:29 ?1816次閱讀
    EditGAN圖像<b class='flag-5'>編輯</b>框架將影響未來幾代<b class='flag-5'>GAN</b>的發(fā)展

    多模態(tài)圖像合成編輯方法

    本篇綜述通過對(duì)現(xiàn)有的多模態(tài)圖像合成編輯方法的歸納總結(jié),對(duì)該領(lǐng)域目前的挑戰(zhàn)和未來方向進(jìn)行了探討和分析。
    的頭像 發(fā)表于 08-23 09:12 ?1470次閱讀

    功率 GaN 技術(shù):高效功率轉(zhuǎn)換的需求-AN90021

    功率 GaN 技術(shù):高效功率轉(zhuǎn)換的需求-AN90021
    發(fā)表于 02-17 19:43 ?1次下載
    功率 <b class='flag-5'>GaN</b> 技術(shù):<b class='flag-5'>高效</b>功率轉(zhuǎn)換的需求-AN90021

    GaN外延生長(zhǎng)方法及生長(zhǎng)模式

    由于GaN在高溫生長(zhǎng)時(shí)N的離解壓很高,很難得到大尺寸的GaN單晶材料,因此,為了實(shí)現(xiàn)低成本、高效、高功率的GaN HEMTs器件,研究人員經(jīng)過幾十年的不斷研究,并不斷嘗試?yán)貌煌耐庋?/div>
    的頭像 發(fā)表于 06-10 09:43 ?1712次閱讀

    基于幾何分析的神經(jīng)輻射場(chǎng)編輯方法

    神經(jīng)輻射場(chǎng)作為近期一個(gè)廣受關(guān)注的隱式表征方法,能合成照片級(jí)真實(shí)的多視角圖像。但因?yàn)槠潆[式建模的性質(zhì),用戶難以直觀編輯神經(jīng)輻射場(chǎng)建模對(duì)象的幾何。面對(duì)這一問題,最新被IEEE TPAMI接收的論文
    的頭像 發(fā)表于 11-20 16:56 ?801次閱讀
    基于幾何分析的神經(jīng)輻射場(chǎng)<b class='flag-5'>編輯</b><b class='flag-5'>方法</b>

    GaN如何實(shí)現(xiàn)更高效、更緊湊的電源

    電子發(fā)燒友網(wǎng)站提供《GaN如何實(shí)現(xiàn)更高效、更緊湊的電源.pdf》資料免費(fèi)下載
    發(fā)表于 09-12 10:00 ?0次下載
    <b class='flag-5'>GaN</b>如何實(shí)現(xiàn)更<b class='flag-5'>高效</b>、更緊湊的電源