女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

師法自然 淺談深度學(xué)習(xí)的多重角度

mK5P_AItists ? 來(lái)源:電子發(fā)燒友網(wǎng) ? 作者:工程師譚軍 ? 2018-07-10 08:46 ? 次閱讀

深度學(xué)習(xí)已經(jīng)成熟到可以教給高中生了么?

我思考的這個(gè)問(wèn)題,源于不久前我收到的?封來(lái)自某大公司產(chǎn)品經(jīng)理的郵件。

我喜歡將私人通訊郵件公開(kāi)于眾,所以我將郵件內(nèi)容摘在下面:

來(lái)自:M.

你好 Ali, ...

你如何訓(xùn)練團(tuán)隊(duì)里的年輕成員,使得他們有更好的直覺(jué)和預(yù)判?我團(tuán)隊(duì)里的工程師經(jīng)常從其他科研員那「借鑒」超參數(shù)的值,但他們太擔(dān)心要自己去調(diào)整參數(shù)了。...

我對(duì)著這封郵件思考了數(shù)日,卻沒(méi)有辦法找到?個(gè)有條理的答案。

如果說(shuō)應(yīng)該有正確答案的話,我想回復(fù)說(shuō):也許她的工程師應(yīng)該要有這種擔(dān)心。

如果你是個(gè)工程師,你拿到了這個(gè)神經(jīng)網(wǎng)絡(luò),然后你被要求去改進(jìn)這個(gè)網(wǎng)絡(luò)在某個(gè)數(shù)據(jù)集上的表現(xiàn)。你也許會(huì)假設(shè)這每層都是有它自己的作用和功能,但在深度學(xué)習(xí)領(lǐng)域,我們目前還沒(méi)有統(tǒng)的語(yǔ)言和詞匯去描述這些功效。我們教授深度學(xué)習(xí)的方法和我們教授其他科學(xué)學(xué)科的方法很不同。

幾年前我迷上了光學(xué)。在光學(xué)領(lǐng)域,你會(huì)堆疊好幾層不同的組件以處理輸?shù)墓庠础@缦聢D,就是相機(jī)的鏡頭:

師法自然 淺談深度學(xué)習(xí)的多重角度

要設(shè)計(jì)這樣的系統(tǒng),你從最簡(jiǎn)單的組件開(kāi)始堆疊,這些組件往往以知名的發(fā)明者命名。然后通過(guò)仿真,你可 以判斷你的設(shè)計(jì)是否符合你的要求,然后再添加不同的組件去修正先前設(shè)計(jì)的缺陷。

緊接著你會(huì)各種數(shù)學(xué)優(yōu)化過(guò)程去調(diào)整這些組件的參數(shù),例如鏡面的形狀、位置和傾斜角度等等,去最大程度實(shí)現(xiàn)你的設(shè)計(jì)目標(biāo)。你就重復(fù)如此仿真、修改、調(diào)優(yōu)的過(guò)程。

這很像我們?cè)O(shè)計(jì)深度網(wǎng)絡(luò)的過(guò)程。

上圖里所有的 36 個(gè)元素都是故意加?這個(gè)堆疊的系統(tǒng),以用于修正某項(xiàng)具體的偏差的。這樣的設(shè)計(jì)需要非常精確的解釋模型去描述什么樣的元素能夠?qū)ν高^(guò)它的光有什么樣的效應(yīng)。這個(gè)模型往往是關(guān)于這個(gè)元素的作用的,例如說(shuō)折射、反射、衍射、散射和波前校正。

師法自然 淺談深度學(xué)習(xí)的多重角度

?們不害怕這樣的設(shè)計(jì)過(guò)程。每年,美國(guó)培養(yǎng)的許多?程師都能設(shè)計(jì)出有的鏡頭,他們并不為這樣的作感到擔(dān)心害怕。

這并不是因?yàn)楣鈱W(xué)很容易,而是因?yàn)槲覀儗?duì)光學(xué)的模型了然在心。

現(xiàn)代光學(xué)是通過(guò)抽象出不同層級(jí)的知識(shí)內(nèi)容去教授的。

師法自然 淺談深度學(xué)習(xí)的多重角度

在最頂級(jí),也是最容易的層級(jí),是幾何光學(xué)。幾何光學(xué)是對(duì)波光學(xué)的抽象,光射線于于表達(dá)簡(jiǎn)單的矢量波光 學(xué)的波前矢量。而波光學(xué)?是對(duì)麥克斯韋方程的進(jìn)?步簡(jiǎn)化。麥克斯韋方程 由能由量子力學(xué)推導(dǎo)而出,量子力學(xué)則超出了我的理解范圍。

每?個(gè)層級(jí)都是通過(guò)作出?些簡(jiǎn)化的假定由緊鄰的下?個(gè)層級(jí)推導(dǎo)?出,所以每?個(gè)層級(jí)能夠比上?個(gè)層級(jí)解釋更為復(fù)雜的現(xiàn)象。

師法自然 淺談深度學(xué)習(xí)的多重角度

我花了不少時(shí)間在頂四層抽象里設(shè)計(jì)系統(tǒng)。

這就是當(dāng)今我們教授光學(xué)的方法。但相關(guān)理論并非總是如此按層級(jí)來(lái)組織。在百年前,這些理論還是在?個(gè) 相互矛盾的狀態(tài)中共存。實(shí)踐家們只能依賴(lài)于近乎道聽(tīng)途說(shuō)的光學(xué)理論。

但這并沒(méi)有阻止伽利略打造性能不錯(cuò)的望遠(yuǎn)鏡,而且是在牛頓形式化幾何光學(xué)前近?個(gè)世紀(jì)的時(shí)間點(diǎn)上。因 為伽利略對(duì)于如何造出能夠放大數(shù)?倍的望遠(yuǎn)鏡有足夠好的解釋模型。但他對(duì)光學(xué)的理解,卻不足以讓他的望遠(yuǎn)鏡能夠修正色差或者獲得廣視角。

在這些光學(xué)理論被抽象總結(jié)出來(lái)之前,每?項(xiàng)理論都需要從光的最基本概念出發(fā)。這就牽涉到要作出?套涵蓋許多也許不切實(shí)際的假設(shè)。牛頓的幾何光學(xué)把光假定作?束束可以被吸引、排斥的固體粒?。惠更斯則? 由「以太」作為介質(zhì)的縱波去描述光,也就是說(shuō)用類(lèi)似聲波的方式去構(gòu)建光。麥克斯韋也假設(shè)光經(jīng)由以太傳播。你從麥克斯韋方程的系數(shù)的名字也能窺得這種思路的??。

愚蠢的模型,確實(shí)。但它們可量化且有預(yù)測(cè)的能力。

這些假設(shè),我們今天聽(tīng)來(lái)也許覺(jué)得很愚蠢,但它們可量化而且有預(yù)測(cè)的能力。你可以隨意代入數(shù)字于其中并得到精準(zhǔn)的量化預(yù)測(cè)。這對(duì)于工程師而言極其有用。

尋找用于描述每層深度學(xué)習(xí)網(wǎng)絡(luò)作用的模塊化語(yǔ)言

如果我們能夠像討論光纖穿越每?層鏡頭元素的作用那樣去討論神經(jīng)網(wǎng)絡(luò)每?層的作用,那么設(shè)計(jì)神經(jīng)網(wǎng)絡(luò)將會(huì)變得更容易。

我們說(shuō)卷積層就像在輸?上滑動(dòng)相應(yīng)濾波器,然后說(shuō)池化是處理了對(duì)應(yīng)的非線性。但這只是非常低層次的描述,就像用麥克斯韋方程去解釋鏡頭的作用。

也許我們應(yīng)該依賴(lài)于更高級(jí)抽象描述,具體表達(dá)某個(gè)量被神經(jīng)網(wǎng)絡(luò)的層級(jí)如何改變了,好比我們用鏡頭的具 體作用去解釋它如何彎曲光線那樣。

如果這種抽象也能夠量化,使得你只需要代?具體數(shù)值到某個(gè)公式里,它就能告訴你?個(gè)大概的量化分析,這樣你就能更好地設(shè)計(jì)你的網(wǎng)絡(luò)了。

我們離這樣的語(yǔ)言還很遠(yuǎn)。我們先從簡(jiǎn)單點(diǎn)的開(kāi)始

上?也許只是我被自己的幻想帶跑了。

我們從簡(jiǎn)單點(diǎn)的開(kāi)始。我們對(duì)深度學(xué)習(xí)的運(yùn)作方式有很多解釋模型。下?我會(huì)羅列?系列值得解釋的現(xiàn)象,然后我們看看?些現(xiàn)有的模型對(duì)這些現(xiàn)象解釋的能力有多強(qiáng)。

在開(kāi)始之前,我得承認(rèn)這種努力也許最后是徒勞的。光學(xué)花了 300 年在打磨自己的模型之上,而我只花了? 個(gè)周六下午,所以這只能算是博客上的?些個(gè)?觀點(diǎn)和想法。

現(xiàn)象:隨機(jī)梯度下降 (SGD) 的隨機(jī)初始化足夠好了。但細(xì)微的數(shù)字錯(cuò)誤或者步長(zhǎng)會(huì)使 SGD 失效。

很多?在實(shí)踐中發(fā)現(xiàn),對(duì)于如何累積梯度的細(xì)微調(diào)整,可以導(dǎo)致對(duì)整個(gè)測(cè)試集表現(xiàn)的巨大變化。例如說(shuō)你只用GPU而不是 CPU 去訓(xùn)練,結(jié)果可能會(huì)截然不同。

現(xiàn)象:淺的局部最優(yōu)值意味著比深的局部最優(yōu)值更好的泛化能力。

這種說(shuō)法很時(shí)髦。有些?認(rèn)為它是真的。有些?則用實(shí)際數(shù)據(jù)反駁。另外也有?給出了這個(gè)現(xiàn)象的變種 。眾說(shuō)紛紜,爭(zhēng)議目前不斷。

這個(gè)現(xiàn)象也許有爭(zhēng)議性,但我還是先放在這里。

現(xiàn)象:批標(biāo)準(zhǔn)化層 (Batch Norm) 可以給 SGD 提速。

這個(gè)基本無(wú)爭(zhēng)議,我只能提供?個(gè)小例外。

現(xiàn)象:即使有很多局部最優(yōu)和鞍點(diǎn),SGD 也表現(xiàn)卓越。

這個(gè)說(shuō)法也包含了幾個(gè)小的點(diǎn)。經(jīng)常有人聲稱(chēng)深度學(xué)習(xí)的損失表面充斥著鞍點(diǎn)和局部最優(yōu)。也有不同的 說(shuō)法,要不就認(rèn)為梯度下降可以遍歷這些區(qū)域,要不就認(rèn)為梯度下降可以不遍歷這些區(qū)域,但都能給出泛化能力不錯(cuò)的答案。也有說(shuō)損失表面其實(shí)也沒(méi)那么不堪。

現(xiàn)象:Dropout 勝于其他隨機(jī)化策略。

我不知道如何正確分類(lèi)類(lèi)似 Dropout 的做法,所以我就稱(chēng)之為「隨機(jī)化策略」了。

現(xiàn)象:深度網(wǎng)絡(luò)能夠記憶隨機(jī)標(biāo)簽,但它們能泛化。

證據(jù)很直白,我的朋友們親自見(jiàn)證并主張這種說(shuō)法。

對(duì)這些現(xiàn)象的解釋

對(duì)應(yīng)上面列舉的這些現(xiàn)象,我在下面列舉我覺(jué)得最能解釋這些現(xiàn)象的理論,這些理論均來(lái)自我上面引用的論文。

師法自然 淺談深度學(xué)習(xí)的多重角度

先別激動(dòng),原因如下:

1. 我們嘗試解釋的這些現(xiàn)象部分有爭(zhēng)議。

2. 我沒(méi)辦法把這些解釋按照抽象層級(jí)組織好。光學(xué)好教學(xué)的特性也沒(méi)辦法在這?重現(xiàn)。

3. 我懷疑部分我引用的理論不正確。

我想說(shuō)的是

有很多人正在加?這個(gè)領(lǐng)域,然而我們能夠給他們傳授的不過(guò)是近乎道聽(tīng)途說(shuō)的經(jīng)驗(yàn)和?些預(yù)訓(xùn)練好的深度網(wǎng)絡(luò),然后就叫他們?nèi)ダ^續(xù)創(chuàng)新。我們甚?都不能認(rèn)同我們要解釋的這些現(xiàn)象。所以我認(rèn)為我們離能夠在高中教授這些內(nèi)容還有很遠(yuǎn)的距離。

那我們?nèi)绾尾拍茈x這?步近點(diǎn)?

最好的不過(guò)是我們能夠就每?層深度網(wǎng)絡(luò)的功能作用,按照不同層級(jí)的抽象,給出對(duì)應(yīng)的解釋模型。例如 說(shuō),神經(jīng)網(wǎng)絡(luò)里的折射、散射和衍射會(huì)是怎么樣的?也許你早就用具體的功能去思考神經(jīng)網(wǎng)絡(luò),但我們就這些概念還沒(méi)有統(tǒng)?的語(yǔ)言。

我們應(yīng)該把?系列確認(rèn)的現(xiàn)象組織起來(lái),然后才來(lái)進(jìn)行理論上的解釋。例如說(shuō)神經(jīng)網(wǎng)絡(luò)里的牛頓環(huán)、磁光克 爾效應(yīng)和法拉第現(xiàn)象會(huì)是怎樣的?

我和一小批同事已經(jīng)開(kāi)始了?項(xiàng)重大的實(shí)踐工作,嘗試去分類(lèi)構(gòu)建適合我們領(lǐng)域的解釋模型,去形式化它 們,并且用實(shí)驗(yàn)去驗(yàn)證它們。這項(xiàng)工作是巨大的,我認(rèn)為第?步應(yīng)該是構(gòu)建?個(gè)分層級(jí)的深度學(xué)習(xí)解釋模 型,以用于高中的教學(xué)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4807

    瀏覽量

    102791
  • 牛頓
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    6409
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5554

    瀏覽量

    122484

原文標(biāo)題:解釋深度學(xué)習(xí)的新角度,來(lái)自光學(xué)的啟發(fā)

文章出處:【微信號(hào):AItists,微信公眾號(hào):人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    深度自然匿名化:隱私保護(hù)與視覺(jué)完整性并存的未來(lái)!

    在科技快速發(fā)展的當(dāng)下,個(gè)人隱私保護(hù)的需求日益凸顯。如何能在隱私保護(hù)的基礎(chǔ)上,保持視覺(jué)完整性,從而推動(dòng)企業(yè)開(kāi)發(fā)與創(chuàng)新? 深度自然匿名化(DNAT)已被證明是傳統(tǒng)模糊化方法的更優(yōu)替代方案,其復(fù)雜的算法和深度
    的頭像 發(fā)表于 01-15 15:57 ?4393次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>自然</b>匿名化:隱私保護(hù)與視覺(jué)完整性并存的未來(lái)!

    自然語(yǔ)言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語(yǔ)言處理的基本概念及步驟

    自然語(yǔ)言處理(Natural Language Processing,簡(jiǎn)稱(chēng)NLP)是人工智能和語(yǔ)言學(xué)領(lǐng)域的一個(gè)分支,它致力于研究如何讓計(jì)算機(jī)能夠理解、解釋和生成人類(lèi)語(yǔ)言。機(jī)器學(xué)習(xí)(Machine
    的頭像 發(fā)表于 12-05 15:21 ?1758次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專(zhuān)門(mén)為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1704次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    能力,可以顯著提高圖像識(shí)別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識(shí)別、自動(dòng)駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過(guò)程。 二、自然語(yǔ)言處理 自然語(yǔ)言處理(NLP)是
    的頭像 發(fā)表于 10-27 11:13 ?1103次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2691次閱讀

    利用Matlab函數(shù)實(shí)現(xiàn)深度學(xué)習(xí)算法

    在Matlab中實(shí)現(xiàn)深度學(xué)習(xí)算法是一個(gè)復(fù)雜但強(qiáng)大的過(guò)程,可以應(yīng)用于各種領(lǐng)域,如圖像識(shí)別、自然語(yǔ)言處理、時(shí)間序列預(yù)測(cè)等。這里,我將概述一個(gè)基本的流程,包括環(huán)境設(shè)置、數(shù)據(jù)準(zhǔn)備、模型設(shè)計(jì)、訓(xùn)練過(guò)程、以及測(cè)試和評(píng)估,并提供一個(gè)基于Mat
    的頭像 發(fā)表于 07-14 14:21 ?3451次閱讀

    深度學(xué)習(xí)中的時(shí)間序列分類(lèi)方法

    的發(fā)展,基于深度學(xué)習(xí)的TSC方法逐漸展現(xiàn)出其強(qiáng)大的自動(dòng)特征提取和分類(lèi)能力。本文將從多個(gè)角度對(duì)深度學(xué)習(xí)在時(shí)間序列分類(lèi)中的應(yīng)用進(jìn)行綜述,探討常用
    的頭像 發(fā)表于 07-09 15:54 ?1939次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)重要分支,近年來(lái)在多個(gè)領(lǐng)域取得了顯著的成果,特別是在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。然而,深度
    的頭像 發(fā)表于 07-09 10:50 ?1554次閱讀

    深度學(xué)習(xí)在視覺(jué)檢測(cè)中的應(yīng)用

    能力,還使得機(jī)器能夠模仿人類(lèi)的某些智能行為,如識(shí)別文字、圖像和聲音等。深度學(xué)習(xí)的引入,極大地推動(dòng)了人工智能技術(shù)的發(fā)展,特別是在圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域取得了顯著成果。
    的頭像 發(fā)表于 07-08 10:27 ?1183次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    深度學(xué)習(xí)自然語(yǔ)言處理(NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域中兩個(gè)非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學(xué)習(xí)與NLP的區(qū)別。
    的頭像 發(fā)表于 07-05 09:47 ?1512次閱讀

    深度學(xué)習(xí)中的模型權(quán)重

    深度學(xué)習(xí)這一充滿無(wú)限可能性的領(lǐng)域中,模型權(quán)重(Weights)作為其核心組成部分,扮演著至關(guān)重要的角色。它們不僅是模型學(xué)習(xí)的基石,更是模型智能的源泉。本文將從模型權(quán)重的定義、作用、優(yōu)化、管理以及應(yīng)用等多個(gè)方面,深入探討
    的頭像 發(fā)表于 07-04 11:49 ?3822次閱讀

    深度學(xué)習(xí)的基本原理與核心算法

    隨著大數(shù)據(jù)時(shí)代的到來(lái),傳統(tǒng)機(jī)器學(xué)習(xí)方法在處理復(fù)雜模式上的局限性日益凸顯。深度學(xué)習(xí)(Deep Learning)作為一種新興的人工智能技術(shù),以其強(qiáng)大的非線性表達(dá)能力和自學(xué)習(xí)能力,在圖像識(shí)
    的頭像 發(fā)表于 07-04 11:44 ?3520次閱讀

    深度學(xué)習(xí)常用的Python庫(kù)

    深度學(xué)習(xí)常用的Python庫(kù),包括核心庫(kù)、可視化工具、深度學(xué)習(xí)框架、自然語(yǔ)言處理庫(kù)以及數(shù)據(jù)抓取庫(kù)等,并詳細(xì)分析它們的功能和優(yōu)勢(shì)。
    的頭像 發(fā)表于 07-03 16:04 ?1066次閱讀

    深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    自然語(yǔ)言處理,深度學(xué)習(xí)和CNN正逐步改變著我們的生活方式。本文將深入探討深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的基本概念、工作原理及其在多個(gè)領(lǐng)域的應(yīng)用,并
    的頭像 發(fā)表于 07-02 18:19 ?1352次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器學(xué)習(xí)的范疇,但
    的頭像 發(fā)表于 07-01 11:40 ?2228次閱讀