女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

神經網絡再進步 麻省理工“人造突觸”問世

JIWa_melux_net ? 來源:未知 ? 作者:鄧佳佳 ? 2018-03-19 15:02 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人腦最不可取代的便是其綜合處理的能力。人腦被柔軟的球狀器官所包圍,這個器官大約含有一千億個神經元。在任何特定的時刻,單個神經元可以通過突觸(即神經元之間的空間,突觸中可交換神經遞質)傳遞指令給數以千計的其它神經元。

人腦中有總計超過 100 萬億的突觸介導大腦中的神經元信號,在加強一些信號的同時也削弱一些其它信號,使大腦能夠以閃電般的速度識別模式(pattern),記住事實并執行其它學習任務。

最近,麻省理工(MIT)的工程師設計了一種人造突觸,可以實現精確控制流過這種突觸的電流強度,即類似離子在神經元之間的流動。

圖 | 從左至右:MIT研究員Scott H. Tan,Jeehwan Kim,和Shinhyun Choi。

該團隊已經制造了一個由硅鍺制成的人造突觸小芯片。在模擬仿真過程中,研究人員發現該芯片及其突觸可以識別手寫樣本,其識別準確率達到 95%。

研究發表在《Nature Materials》上,這一成果也被認為是邁向用于模式識別和其它學習任務的便攜式低功耗神經形態芯片的重要一步。

團隊最后的測試是探索如何執行實際的學習任務,比如如何識別手寫樣本。研究人員認為,這是神經形態芯片的首次實際測試。該芯片由輸入/隱藏/輸出神經元組成,每個神經元經由基于細絲的人造突觸連接到其他神經元。

研究團隊還運行了基于此芯片的人工神經網絡計算機仿真模擬。他們以常用的手寫識別數據庫中的樣本作為仿真模擬測試的輸入樣品,在測試了成千上萬個樣本之后,他們發現,這一神經網絡硬件系統的識別精度為 95%,而現有的軟件算法精度為 97%。

值得注意的是,這次的成果有望為近年涌現的一個新趨勢再添一把火,那就是計算能力從云端向終端遷移。目前我們看到的大多數AI計算,基本是在云端實現的,但是,這個方式正在日顯疲軟。拿自動駕駛為例,如果避險時AI必須將信息上傳至云端,由云端完成計算才能獲得處理結果,現實風險是很大的。

因此,終端的計算能力對 AI 的重要性已經得到了學界和業界的共同認可,終端計算性能的提升也成為了萬眾追逐的目標。一個更明顯的例子是 AI 手機。作為與個人生活場景的全天候連接的智能設備,AI 手機對于在終端運行 AI 計算的需求正在變得更加多元化,例如語音、圖像、視頻處理等等。但是,作為移動設備,AI 手機所能攜帶的計算資源有限。

麻省理工團隊成果的重要價值正體現在這里。他們的人造突觸設計能實現更小體積的便攜式神經網絡設備,這些便攜式神經網絡設備未來將可以完成目前只有大型超級計算機能完成的復雜計算,輔助AI能夠迅猛發展。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103630
  • AI
    AI
    +關注

    關注

    88

    文章

    35164

    瀏覽量

    279985

原文標題:麻省理工的“人造突觸”問世!將輔助AI迅猛發展

文章出處:【微信號:melux_net,微信公眾號:人工智能大趨勢】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?670次閱讀

    BP神經網絡的優缺點分析

    BP神經網絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優點,同時也存在一些不容忽視的缺點。以下是對BP神經網絡優缺點的分析: 優點
    的頭像 發表于 02-12 15:36 ?924次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發表于 02-12 15:18 ?771次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural N
    的頭像 發表于 02-12 15:15 ?863次閱讀

    BP神經網絡的基本原理

    BP神經網絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經網絡基本原理的介紹: 一、網絡結構 BP神經網絡
    的頭像 發表于 02-12 15:13 ?858次閱讀

    王欣然教授團隊提出基于二維材料的高效稀疏神經網絡硬件方案

    。 ? 稀疏性 (Sparsity)?是人腦中的神經突觸的本征屬性。在大腦發育過程中,超過一半的突觸會以細粒度和非結構化的方式被剪枝?(Pruning),這是人腦具有高能效的關鍵因素。受此啟發,稀疏
    的頭像 發表于 01-13 10:41 ?539次閱讀
    王欣然教授團隊提出基于二維材料的高效稀疏<b class='flag-5'>神經網絡</b>硬件方案

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1196次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統神經網絡
    的頭像 發表于 11-15 14:53 ?1873次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統神經網絡(如前饋
    的頭像 發表于 11-15 09:42 ?1129次閱讀

    LSTM神經網絡的結構與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經網絡是一種特殊的循環神經網絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數據時表現出色。以下是LSTM神經網絡
    的頭像 發表于 11-13 10:05 ?1631次閱讀

    LSTM神經網絡與傳統RNN的區別

    在深度學習領域,循環神經網絡(RNN)因其能夠處理序列數據而受到廣泛關注。然而,傳統RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經網絡應運而生。 循環
    的頭像 發表于 11-13 09:58 ?1214次閱讀

    LSTM神經網絡的基本原理 如何實現LSTM神經網絡

    LSTM(長短期記憶)神經網絡是一種特殊的循環神經網絡(RNN),它能夠學習長期依賴信息。在處理序列數據時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關系而受到
    的頭像 發表于 11-13 09:53 ?1587次閱讀

    麻省理工學院推出新型機器人訓練模型

    近日,據TechCrunch報道,麻省理工學院的研究團隊展示了一種創新的機器人訓練模型,該模型突破了傳統模仿學習方法的局限,不再依賴標準數據集,而是借鑒了大型語言模型(LLM)如GPT-4等所使用的大規模信息處理方式,為機器人學習新技能開辟了全新的道路。
    的頭像 發表于 11-04 14:56 ?947次閱讀

    Moku人工神經網絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經網絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調節校準、閉環反饋等應用。如果您
    的頭像 發表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發表于 09-18 15:14