女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何讓智能客服像真人一樣對話?容聯(lián)七陌揭秘:多Agent大模型

科技云報到 ? 來源:jf_60444065 ? 作者:jf_60444065 ? 2024-09-26 18:41 ? 次閱讀

科技云報到原創(chuàng)。


經(jīng)歷了多年的“答非所問”、“一問三不知”,很多人已經(jīng)厭倦了所謂的“智能客服”。哪怕是技術(shù)已經(jīng)非常成熟、可以模擬真人發(fā)音的外呼機器人,也會因為“機感”重而被用戶迅速掛機或轉(zhuǎn)向人工客服。

智能客服似乎遇到了一道坎,在理解用戶、和用戶對話方面,始終無法實現(xiàn)真正的“智能”。然而大模型技術(shù)的出現(xiàn),讓智能客服看到了前所未有的曙光——基于大模型特有的生成式技術(shù)和智能的涌現(xiàn),讓智能客服越來越逼近人們想象中的樣子。

但問題是,僅有大模型就夠了嗎?大模型技術(shù)要如何引入智能客服才能落地?落地后的大模型究竟如何在智能客服具體場景中發(fā)揮作用?又能為客服行業(yè)帶來了哪些改變?更進一步,對于企業(yè)和用戶而言,這種改變是否具備真正的價值?

帶著這些問題,我們采訪了容聯(lián)七陌的產(chǎn)品負責人劉倩。容聯(lián)七陌是國內(nèi)知名的企業(yè)智能客服系統(tǒng)服務商,專注智能客服領(lǐng)域已有十年內(nèi),其智能客服廣泛應用于教育培訓、醫(yī)療醫(yī)藥、電商直播、新零售、智能制造、汽車、泛互聯(lián)網(wǎng)等多個領(lǐng)域,服務了包括作業(yè)幫、復興健康、同仁堂、虎牙、多點、廣汽能源、紅旗、居然之家等等品牌。

作為智能客服領(lǐng)域探索大模型技術(shù)的“急先鋒”,今年8月,容聯(lián)七陌推出了行業(yè)首創(chuàng)的“新一代大模型智能客服解決方案”,讓智能客服在意圖理解、答案生成、情緒理解方面,都實現(xiàn)了跨越式的能力提升。

為了讓大家更好地理解大模型為智能客服帶來的革命性變化,以及技術(shù)和應用如何交疊落地,我們整理了與容聯(lián)七陌產(chǎn)品負責人劉倩的采訪內(nèi)容,以對話的形式精選給大家:

Q:大模型熱已經(jīng)持續(xù)一年多了,大模型技術(shù)到底為智能客服領(lǐng)域帶來了哪些變化?

A:大模型帶來的變化和價值,其實大家一直都在探索中。對于智能客服來說,主要是把大模型的理解能力和生成能力,應用到對話產(chǎn)品中。

比如,以前在網(wǎng)上買東西,智能客服給用戶的回答是有套路的,所以看起來回復是冷冰冰的,有時候還答非所問。

但是有了大模型之后,智能客服就可以自己生成話術(shù),接得住用戶的話頭,回答自然流暢,就像和真人聊天一樣。在對話的理解上,大模型也可以應對用戶多樣化的表達方式,比如不同的問法、錯別字等等,都能夠真正去理解。

所以,新一代智能客服會更多依賴原生大模型,對用戶來說就是更自然、更智能的體驗,而非上一代產(chǎn)品那種簡單的、預制的回答。

wKgZomb1OjuAevpyAAEjCdQ7RMg838.jpg


Q:如果和上一代智能客服相比,您會如何評價新一代大模型原生的智能客服?

A:傳統(tǒng)的智能客服存在幾個痛點:

第一是大家吐槽的“智障”,其實就是機器對語義理解不足,用戶提了訴求,但機器答非所問的概率很高。這是因為上一代智能客服,在技術(shù)上使用的是關(guān)鍵詞、BERT模型等機制,這種機制需要大量的數(shù)據(jù)標注,標注越多,理解能力就越強,但標注高度依賴人工。一旦人工標注和訓練不足,機器的理解能力就會不夠,結(jié)果就是答非所問。

第二是用戶體驗不好,缺乏情感表達。用戶是有情緒的,但上一代智能客服是預制的,不管用戶什么情緒來提問,機器都是標準回復,比較機械。機器能不能打動用戶、解決用戶問題,完全取決于設(shè)計問答的那個人。

第三是復雜的任務類的處理很呆板。比如預定會議室,上一代智能客服一般會使用流程畫布,第一步問定會議室的時間、參會人等信息,再調(diào)取定會議室的接口,必須一步步按設(shè)定好的流程來。當用戶的話題超出了設(shè)定范圍,智能客服就會直接告訴用戶,它答不上來,最后轉(zhuǎn)人工客服的比例其實很高。

第四是成本高。上一代智能客服需要設(shè)立專門的機器人訓練師,因為他需要窮舉業(yè)務上的問題和標準答案,每個問題還要提供不少于30個的相似句。如果涉及到一些復雜的業(yè)務知識和流程,還需要梳理知識圖譜。這個訓練過程是非常復雜的,通常需要3個月到半年,然后才能達到80%的解決率。專門配置這樣一個訓練師,企業(yè)成本是非常高的。

但是有了大模型之后,新一代智能客服可以很好地解決這些痛點:

首先,大模型可以冷啟動,不需要標注數(shù)據(jù),只需要把客戶的業(yè)務知識維護進去,就能達到很好的效果——回復人性化,接得上用戶的話題,能夠理解用戶的情緒等等。比如,一個用戶一開口就很生氣,新一代大模智能客服會先進行安撫,然后再列出相應的解決方案。因為它能夠根據(jù)用戶的情緒變化生成對應的回復,所以用戶對話的流暢度體驗就會很好,情緒價值也足夠。

再說流程類,就像前面提到的預定會議室的場景,大模型不需要固定的流程設(shè)置和窮舉話題。因為它有很強的推理能力,當我們給到它對應的提示詞工程,告訴它定會議室需要用戶提供哪些信息,大模型就可以自己去思考已經(jīng)拿到了哪些信息,還缺哪些信息,從而引導用戶給出完整的所需信息。就算中間用戶切換話題,大模型也可以繼續(xù)聊下去。

最后說成本,因為有了大模型,就不再需要專門的機器訓練師了,企業(yè)成本降低了,回答的準確率還上升了。

比如,我們測試過一個保險客戶,對方提供了一個10萬字的測試資料,包括保險條款、規(guī)則制度等,整理出來有幾千個知識點。按照上一代智能客服的工作方式,光整理資料,最少就要一個星期,只能達到40%的解決率,后面還要不停的標注。

但是新一代大模型智能客服,用大模型自動清理知識點,1天就可以完成工作,測試的解決率高達100%,上線后解決率也高達92%(即沒有轉(zhuǎn)接人工的比例)。


Q:容聯(lián)七陌率先在業(yè)內(nèi)發(fā)布了新一代大模型智能客服解決方案,能否介紹一下這個解決方案的產(chǎn)品功能和亮點?

A:融合容聯(lián)七陌已有的產(chǎn)品,我們推出了4款基于原生大模型的智能客服產(chǎn)品:

LLM文本機器人:接待IM渠道(網(wǎng)站、公眾號、APP等)接入的用戶需求;

LLM智能外呼 & LLM智能呼入:主要應用在呼叫中心場景中。

LLM座席助手:輔助人工客服,比如生成回應話術(shù)、自動生成服務小結(jié)、創(chuàng)建智能工單等。

wKgaomb1OjuAOyOHAAC6aqGzKA4633.jpg

這個解決方案最大的亮點,就是我們前面談到的基于原生大模型的理解能力、情緒感知能力。之所以這個方案可以取得很好的效果,關(guān)鍵就在于采用了“多Agent”的產(chǎn)品架構(gòu)。

Agent就是智能體,它是構(gòu)建于大模型之上的一個計算機的程序,可以模擬獨立思考的過程,靈活調(diào)用各類工具。為什么我們要采用多個Agent的產(chǎn)品架構(gòu)?我從客戶業(yè)務的角度來談一下:

例如,我們合作過一個教育行業(yè)頭部企業(yè),它的客服主要有三類工作內(nèi)容:第一類是簡單的寒暄;第二類是回答業(yè)務的通用問題,比如APP頭像怎么修改;第三類是VIP業(yè)務,比如VIP權(quán)益介紹、使用、續(xù)費等。

這三類工作是不同類型的任務,但又是多任務混合。要解決每一類任務,對應到產(chǎn)品結(jié)構(gòu)上,就是一個具體的業(yè)務場景,匹配一個單一的Agent。通過這個Agent感知、思考、行動,然后來完成對應的單一任務,這樣效果更好。所以要完成復雜的任務,就需要多個Agent的架構(gòu),通過不同的Agent去解決不同業(yè)務場景的問題,這樣的架構(gòu)能夠很好地提升準確率。


Q:請進一步談談容聯(lián)七陌是如何提升智能客服回復的準確率?例如,針對大模型幻覺等問題,如何保證智能客服給出的答復一定是準確的?如何判斷在什么場景下,是由大模型自動生成回復,還是由人工來回答?

A:第一,多Agent架構(gòu),本身就提升了智能客服回復的準確率。第二,提示詞工程,我們根據(jù)客戶的實際業(yè)務去抽象了很多提示詞,在工程上進一步提升準確率。

那么如何判斷在什么場景下,是由機器還是人工來回復?

如果只是簡單知識點或者推理,直接由大模型來回復就可以了。這里我主要談談復雜推理的場景下,該如何處理?

例如,在保險業(yè)務中,對于能否投保的判斷是非常復雜的,如果不理解業(yè)務,光有知識點,是很難做出這種復雜推理的。所以針對大模型復雜推理場景,我們設(shè)計了三個功能模塊:

一是知識詞典,就是補充保險條款中的細節(jié)知識點,讓大模型能夠去推理。

二是最佳實踐,就是給大模型一些示例參考,進一步提升推理的效果。

三是二次復核,就是去復核大模型生成的回答是否準確,是否能解決用戶的問題,是否包含違禁詞等等,這也是對大模型幻覺的一個檢驗機制。一旦發(fā)現(xiàn)大模型生成的回復有問題,我們也有配套的策略,比如馬上轉(zhuǎn)人工或者進入(Ask Human Help)托管模式。

除此之外,我們也有專門的功能模塊,讓大模型自動對人工客服的服務記錄進行學習,這也是提升大模型效果很重要的一點。


Q:容聯(lián)七陌新一代大模型智能客服,在不同行業(yè)和不同場景中的落地效果如何?

A:目前我們已經(jīng)在多個業(yè)務場景中進行了落地測試:

第一,售前的營銷套電場景。在某家居家裝公司中,使用大模型智能客服替代傳統(tǒng)流程式機器人,目前大模型機器人可以自然接住用戶的話題,采用先聊天,再委婉請用戶留下資料的方式,將留資率從21%提升到了32.91%。

第二,外呼邀約場景。依然以這個家居家裝公司為例,通過外呼機器人對留資客戶進行回訪邀約。傳統(tǒng)外呼機器人需要投入大量人力對流程、話術(shù)、知識點、意圖等進行訓練,準確率不高,話術(shù)也固定,用戶體驗一般。但是大模型外呼機器人可以根據(jù)上下文語義判斷客戶意向等級、自動小結(jié)標簽等,將客戶意向度提高了23%,信息抓取準確度也提高了46%。

第三,客服場景。在某大型企業(yè)內(nèi)部的HRSSC服務中,員工提問涉及大量的公司規(guī)定、社保、公積金等問題,知識來源形式復雜,并且具有時效性。如果全部使用HR人工答疑,其他工作就忙不過來了。使用大模型智能客服后,可以極大緩解HR的工作壓力,HRSSC解決率高達97%。

第四,呼入接待場景。某保險公司使用傳統(tǒng)呼入機器人,為用戶答疑頭部流程、理賠等,但解決率不到30%,轉(zhuǎn)人工接聽,無法滿足24小時服務,且人手不足。使用大模型智能客服后,實現(xiàn)了24小時接聽服務,且解決率提升至92.02%,大大緩解了人工壓力。

wKgZomb1OjyAW6NQAALe2w0jyw8112.jpg

Q:容聯(lián)七陌新一代大模型智能客服方案,是否為標準化產(chǎn)品?如何滿足不同客戶的個性化需求?

A:我們依然采用SaaS模式的標準化產(chǎn)品,因為一個企業(yè)想要私有化部署大模型,成本是難以承受的。所以在產(chǎn)品的功能設(shè)計上,我們采用了靈活可配置的SaaS模式,同時也設(shè)置了很多低代碼模板,方便客戶根據(jù)自身業(yè)務去做搭建。

不同行業(yè)和場景的客戶在使用容聯(lián)七陌大模型智能客服時,可以直接采用我們推出的4款新產(chǎn)品,也可以通過靈活配置Agent來滿足個性化的業(yè)務需求。


Q:市面上有多款大模型智能客服產(chǎn)品,同樣是基于大模型技術(shù),為什么體現(xiàn)出來的“智能”效果并不相同?決定“智能”效果的因素有哪些?

A:并不是有了大模型,智能客服就一定“智能”,通用大模型是否用得起來,產(chǎn)品應用層很重要。容聯(lián)七陌的智能客服之所以“智能”,和我們采用多Agent模型的產(chǎn)品架構(gòu),以及客服領(lǐng)域的豐富經(jīng)驗密不可分。這種經(jīng)驗就包括如何讓大模型理解客戶業(yè)務場景,如何設(shè)計功能模塊去解決問題,如何讓大模型越用越智能等等,是一種技術(shù)和行業(yè)應用的結(jié)合。

我們也看到很多同行在探索智能客服的大模型應用,但大模型只是作為某種功能輔助,比如提升會話小結(jié)的效率、提升訓練師的工作效率等,其實是拿大模型輔助去提升上一代智能客服的效率,沒有從根本上改變上一代智能客服的痛點。這也是為什么我們強調(diào)原生大模型的智能客服,它和上一代智能客服的體驗和效率完全不在一個級別。


Q:目前智能客服領(lǐng)域都在研究大模型Agent的落地路徑,它的競爭壁壘在哪里?容聯(lián)七陌的優(yōu)勢是什么?

A:容聯(lián)七陌從2023年底就確定了大模型Agent的路徑,算是國內(nèi)智能客服行業(yè)最早一批確立落地方向的企業(yè)。前面談到了容聯(lián)七陌在多Agent、提示詞工程、功能設(shè)計等多個方面的探索,主要體現(xiàn)了產(chǎn)品和技術(shù)的競爭力。

例如,容聯(lián)七陌獨創(chuàng)的Ask Human Help托管模式,就是用大模型機器人全程接待,告別了直接轉(zhuǎn)人工的模式。

在以往的客服人機協(xié)同模式中,機器轉(zhuǎn)人工是能明顯感知到的,而且人工回答完之后沒法再轉(zhuǎn)接給機器,客戶體驗和人工成本都不好。但是有了Ask Human Help托管模式,用戶不再使用點選按鈕的交互,而是直接用自然語言就可以交流,所以用戶感知不到對面是機器人在服務。當大模型答不上來時,會轉(zhuǎn)給人工客服,但人工只需要回答轉(zhuǎn)進來的這一條消息,就可以立即再轉(zhuǎn)回給大模型。

在這種轉(zhuǎn)變下,人工客服的工作量從“會話級別”下降到“消息級別”,每個客戶的會話服務時長可能從平均10分鐘下降到1分鐘內(nèi),那么同等數(shù)量下的人工客服就能接待更多的客戶。對于客戶來說,服務的體驗也更好了,解決問題的效率也更高了。無論對于企業(yè)還是客戶,在這種模式下都是受益的。

除此之外,容聯(lián)七陌還有很重要的一個競爭優(yōu)勢,就是我們深耕客服領(lǐng)域已經(jīng)有十年了,在客服解決方案的各個環(huán)節(jié)做了很多設(shè)計和優(yōu)化,能夠充分貼合各行業(yè)客戶的客服場景應用,比如將客服系統(tǒng)和人力、工單等業(yè)務系統(tǒng)做了集成。所以容聯(lián)七陌的大模型智能客服Agent解決方案,不僅是單一產(chǎn)品,而是一整套解決方案,涵蓋售前、售中、售后的全部場景。

同時,容聯(lián)七陌有多年的行業(yè)服務經(jīng)驗,把行業(yè)客戶的痛點、實施落地踩的坑都摸過一遍,所以我們?yōu)榭蛻粼O(shè)計的解決方案能達到比較好的效果,而且客戶需求設(shè)計、方案設(shè)計、實施、培訓、服務都跟得上。


Q:圍繞智能客服Agent,未來容聯(lián)七陌還將在哪些方向上進行探索?

A:我們將繼續(xù)增強產(chǎn)品的智能性和問題解決能力,持續(xù)探索大模型準確率的提升。同時,也會關(guān)注大模型多模態(tài)技術(shù)的發(fā)展,如ASR、TTS、音色克隆等,將大模型的不同技術(shù)應用到智能客服產(chǎn)品中去。

在市場應用上,目前容聯(lián)七陌智能客服已覆蓋了多個行業(yè),未來期待新一代大模型智能客服能夠應用到更廣泛的行業(yè)和場景中,助力更多行業(yè)客戶降本增效,提升客戶服務和營銷體驗。

【關(guān)于科技云報到】

企業(yè)級IT領(lǐng)域Top10新媒體。聚焦云計算人工智能、大模型、網(wǎng)絡(luò)安全、大數(shù)據(jù)、區(qū)塊鏈等企業(yè)級科技領(lǐng)域。原創(chuàng)文章和視頻獲工信部權(quán)威認可,是世界人工智能大會、數(shù)博會、國家網(wǎng)安周、可信云大會與全球云計算等大型活動會議的官方指定傳播媒體之一。


審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1804

    文章

    48628

    瀏覽量

    246103
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3008

    瀏覽量

    3784
收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗】+Agent開發(fā)平臺

    store 一樣構(gòu)建起整套完善的交易及會員體系。目前,大多數(shù)Agent開放平臺還處于免費模式,其商業(yè)化的生態(tài)尚且不夠成熟。 扣子是字節(jié)跳動所推出的Agent開發(fā)平臺,它包括海外版和
    發(fā)表于 05-13 12:24

    正點原子 AI BOX0 智能伴侶,1.54寸高清屏+長效續(xù)航,語音暢聊,情景對話,知識科普,色可選,隨身攜帶!

    品非它莫屬! 為什么選擇小智AI? 真人級交互體驗 ① AI情感對話:不止問答,更能陪你聊心事、講笑話,朋友一樣懂你! ② 10+音色百變:溫柔御姐、萌趣童聲、磁性男神… 每天換
    發(fā)表于 04-24 16:11

    【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗】+初品Agent

    任務的數(shù)字員工。 可將其概括為: Agent=大模型+記憶+主動規(guī)劃+工具使用 可以這樣來理解它,Agent個執(zhí)行智能化處理的工具實體,
    發(fā)表于 04-22 11:51

    基于MindSpeed MM玩轉(zhuǎn)Qwen2.5VL模態(tài)理解模型

    模態(tài)理解模型AI人類一樣,通過整合多維度信息(如視覺、語言、聽覺等),理解數(shù)據(jù)背后的語義、情感、邏輯或場景,從而完成推理、決策等任務
    的頭像 發(fā)表于 04-18 09:30 ?507次閱讀
    基于MindSpeed MM玩轉(zhuǎn)Qwen2.5VL<b class='flag-5'>多</b>模態(tài)理解<b class='flag-5'>模型</b>

    【「AI Agent應用與項目實戰(zhàn)」閱讀體驗】書籍介紹

    會追根溯源,你有種“大徹大悟”的感覺。 這本書主要講大語言模型的內(nèi)容,教我們做個AI Agent應用出來,其實這個東西現(xiàn)在也叫智能體了,
    發(fā)表于 03-05 20:40

    《AI Agent 應用與項目實戰(zhàn)》----- 學習如何開發(fā)視頻應用

    再次感謝發(fā)燒友提供的閱讀體驗活動。本期跟隨《AI Agent 應用與項目實戰(zhàn)》這本書學習如何構(gòu)建開發(fā)個視頻應用。AI Agent智能
    發(fā)表于 03-05 19:52

    《AI Agent應用與項目實戰(zhàn)》閱讀體驗--跟著迪哥學Agent

    的知識是自由行,那么閱讀《Agent》就是跟團游。它我對AI落地應用有了更系統(tǒng)和清晰的了解。 《Agent》第章是全書的導引章節(jié),本章
    發(fā)表于 03-02 12:28

    《AI Agent 應用與項目實戰(zhàn)》閱讀心得2——客服機器人、AutoGen框架 、生成式代理

    繼續(xù)分享第2篇閱讀心得。 傳統(tǒng)客服系統(tǒng)在知識庫更新和對話管理方面存在諸多技術(shù)瓶頸,本書第3章中提出的AI課程客服機器人架構(gòu)巧妙地解決了這些問題。該架構(gòu)采用Replit作為開發(fā)環(huán)境
    發(fā)表于 02-25 21:59

    《AI Agent 應用與項目實戰(zhàn)》第1-2章閱讀心得——理解Agent框架與Coze平臺的應用

    Agent通過引入記憶機制和推理能力,可以專業(yè)數(shù)據(jù)分析師一樣,對數(shù)據(jù)進行多維度分析,提供深入的業(yè)務洞察。從技術(shù)層面看,Agent的優(yōu)勢在于它能夠自主地完成任務規(guī)劃和資源調(diào)度,這種自
    發(fā)表于 02-19 16:35

    智譜 GLM-PC 開放體驗,模態(tài) Agent 升級

    即用的電腦智能體。它能人類一樣“觀察”和“操作”計算機,協(xié)助用戶完成各類電腦任務。 GLM-PC v1.0于2024年11月29日發(fā)布并開放內(nèi)測。此次升級推出了“深度思考”模式,增加了專用于邏輯推理和代碼生成的功能,還提供了對
    的頭像 發(fā)表于 01-24 14:10 ?668次閱讀

    【「大模型啟示錄」閱讀體驗】如何在客服領(lǐng)域應用大模型

    客服領(lǐng)域是大模型落地場景中最多的,也是最容易實現(xiàn)的。本身客服領(lǐng)域的特點就是問答形式,大模型接入難度低。今天跟隨《大模型啟示錄 》這本書,學
    發(fā)表于 12-17 16:53

    智能體已經(jīng)能一樣刷視頻了?國內(nèi)聯(lián)匯科技OmAgent智能體試用!

    智能體已經(jīng)能一樣刷視頻了?國內(nèi)知名大模型獨角獸級別公司,資深AI玩家聯(lián)匯科技退出了OmAgent智能
    的頭像 發(fā)表于 11-22 18:59 ?390次閱讀
    <b class='flag-5'>智能</b>體已經(jīng)能<b class='flag-5'>像</b>人<b class='flag-5'>一樣</b>刷視頻了?國內(nèi)聯(lián)匯科技OmAgent<b class='flag-5'>智能</b>體試用!

    ChatGPT:怎樣打造智能客服體驗的重要工具?

    ChatGPT作為智能對話生成模型,可以幫助打造智能客服體驗的重要工具。以下是些方法和步驟:1.數(shù)據(jù)收集和準備:收集和整理與
    的頭像 發(fā)表于 11-01 11:12 ?389次閱讀
    ChatGPT:怎樣打造<b class='flag-5'>智能</b><b class='flag-5'>客服</b>體驗的重要工具?

    微軟Dynamics365集成10大自主AI Agent,引領(lǐng)智能自動化新時代

    完成客服、銷售、財務、倉儲等多項業(yè)務,顯著提升工作效率。 據(jù)了解,這些AI Agent采用了OpenAI最新的o1模型,其卓越的智能水平和學習能力確保了它們能夠自動執(zhí)行跨平臺的超復雜業(yè)
    的頭像 發(fā)表于 10-23 11:25 ?701次閱讀

    聯(lián)云發(fā)布犀大模型應用矩陣

    在2024年世界人工智能大會的璀璨舞臺上,聯(lián)云作為智能通信領(lǐng)域的佼佼者,隆重推出了其精心打造的智能
    的頭像 發(fā)表于 07-09 14:36 ?591次閱讀