女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習和遷移學習應用,識別麥田倒伏面積

juying ? 來源:juying ? 作者:juying ? 2023-12-12 16:14 ? 次閱讀

在小麥揚花灌漿期,土壤中的養分供應非常重要。因此,及時施肥是保證小麥生長的關鍵。一般來說,施肥時間應該在小麥揚花開始期時進行。一般選擇氮、磷、鉀等多種元素的肥料進行施用,以保證小麥的健康生長。

小麥揚花灌漿期對水分的需求量非常大,但是過量的灌溉也容易導致小麥發生根腐病或者其他水害。因此,在小麥揚花灌漿期,適當控制水分非常重要。一般來說,在小麥揚花灌漿期,應該根據實際情況,靈活掌握灌溉的時間和量,以保證小麥的生長和發育。

利用低空無人機技術,并結合深度學習語義分割模型精準提取作物倒伏區域是一種高效的倒伏災害監測手段。在實際應用中,受田間各種客觀條件(不同無人機飛行高度低于120m、多個研究區、關鍵生育期不同天氣狀況等)限制,無人機獲取的圖像數量仍偏少,難以滿足高精度深度學習模型訓練的要求。

安徽大學農業生態大數據分析與應用技術國家地方聯合工程研究中心與西北農林科技大學機械與電子工程學院、宿州學院信息工程學院,組成了胡根生教授團隊展開了研究,旨在探索一種在作物生育期和研究區有限的情況下精準提取倒伏面積的方法。

以健康/倒伏小麥為研究對象,在其灌漿期和成熟期開展麥田圖像采集工作。設置2個飛行高度(40和80m),采集并拼接獲取2019、2020、2021和2023年份3個研究區的數字正射影像圖;在Swin-Transformer深度學習語義分割框架基礎上,分別使用40m訓練集單獨訓練、40和80m訓練集混合訓練、40m訓練集預訓練80m訓練集遷移學習等3種訓練方法,獲得對照模型、混合訓練模型和遷移學習模型;采用對比實驗比較上述3種模型分割80m高度預測集圖像的精度并評估模型性能。

遷移學習模型倒伏面積提取精度最高,交并比、正確率、精確率、召回率和F1-Score共5個指標平均數分別為85.37%、94.98%、91.30%、92.52%和91.84%,高于對照組模型1.08%~3.19%,平均加權幀率達到738.35fps/m2,高于40m圖像183.12fps/m2。

利用低飛行高度(40m)預訓練語義分割模型,在較高飛行高度(80m)空圖像做遷移學習的方法提取倒伏小麥面積是可行的,這為解決空域飛行高度限制下,較少80m及以上圖像數據集無法滿足語義分割模型訓練的要求的問題,提供了一種有效的方法。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 無人機
    +關注

    關注

    230

    文章

    10738

    瀏覽量

    185596
  • 深度學習
    +關注

    關注

    73

    文章

    5554

    瀏覽量

    122494
  • 遷移學習
    +關注

    關注

    0

    文章

    74

    瀏覽量

    5688
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?1718次閱讀

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別
    的頭像 發表于 10-27 11:13 ?1117次閱讀

    激光雷達技術的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術的發展 深度學習是機器學習的一個分支,它通過模擬人
    的頭像 發表于 10-27 10:57 ?951次閱讀

    AI大模型與深度學習的關系

    人類的學習過程,實現對復雜數據的學習識別。AI大模型則是指模型的參數數量巨大,需要龐大的計算資源來進行訓練和推理。深度學習算法為AI大模型
    的頭像 發表于 10-23 15:25 ?2696次閱讀

    利用Matlab函數實現深度學習算法

    在Matlab中實現深度學習算法是一個復雜但強大的過程,可以應用于各種領域,如圖像識別、自然語言處理、時間序列預測等。這里,我將概述一個基本的流程,包括環境設置、數據準備、模型設計、訓練過程、以及測試和評估,并提供一個基于Mat
    的頭像 發表于 07-14 14:21 ?3455次閱讀

    基于Python的深度學習人臉識別方法

    基于Python的深度學習人臉識別方法是一個涉及多個技術領域的復雜話題,包括計算機視覺、深度學習、以及圖像處理等。在這里,我將概述一個基本的
    的頭像 發表于 07-14 11:52 ?1583次閱讀

    預訓練和遷移學習的區別和聯系

    預訓練和遷移學習深度學習和機器學習領域中的兩個重要概念,它們在提高模型性能、減少訓練時間和降低對數據量的需求方面發揮著關鍵作用。本文將從定
    的頭像 發表于 07-11 10:12 ?1909次閱讀

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨
    的頭像 發表于 07-09 15:54 ?1948次閱讀

    深度學習中的無監督學習方法綜述

    深度學習作為機器學習領域的一個重要分支,近年來在多個領域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領域。然而,
    的頭像 發表于 07-09 10:50 ?1564次閱讀

    深度學習在視覺檢測中的應用

    能力,還使得機器能夠模仿人類的某些智能行為,如識別文字、圖像和聲音等。深度學習的引入,極大地推動了人工智能技術的發展,特別是在圖像識別、自然語言處理、語音
    的頭像 發表于 07-08 10:27 ?1188次閱讀

    深度學習與nlp的區別在哪

    深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯系,也有區別。本文將介紹深度學習與NLP的區別。 深度
    的頭像 發表于 07-05 09:47 ?1516次閱讀

    遷移學習的基本概念和實現方法

    遷移學習(Transfer Learning)是機器學習領域中的一個重要概念,其核心思想是利用在一個任務或領域中學到的知識來加速或改進另一個相關任務或領域的學習過程。這種方法在數據稀缺
    的頭像 發表于 07-04 17:30 ?3231次閱讀

    深度學習的基本原理與核心算法

    隨著大數據時代的到來,傳統機器學習方法在處理復雜模式上的局限性日益凸顯。深度學習(Deep Learning)作為一種新興的人工智能技術,以其強大的非線性表達能力和自學習能力,在圖像
    的頭像 發表于 07-04 11:44 ?3534次閱讀

    深度學習與卷積神經網絡的應用

    隨著人工智能技術的飛速發展,深度學習和卷積神經網絡(Convolutional Neural Network, CNN)作為其中的重要分支,已經在多個領域取得了顯著的應用成果。從圖像識別、語音
    的頭像 發表于 07-02 18:19 ?1356次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發表于 07-01 11:40 ?2232次閱讀