女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

兼容OpenVINO?及各類預訓練深度神經網絡模型的高性能開發板

研揚科技AAEON ? 2023-09-04 16:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作為研揚UP Squared Pro系列的第三代產品,UP Squared Pro 7000通過高性能計算能力、升級的電路板設計和擴展的顯示接口,提供更大的開發潛力。

060beb3a-4afc-11ee-a20b-92fbcf53809c.jpg

作為該系列中首款采用Intel Core/Atom/N系列處理器(代號為 Alder Lake-N)的產品,UP Squared Pro 7000是首款配備板載LPDDR5內存的產品,提高了I/O的運行速度。此外,UP Squared Pro 7000在圖像處理和顯示功能方面都有顯著提升,支持MIPI CSI照相機,并搭配Intel UHD顯卡,可同時連接三臺4K顯示器。

功 能 特 點

1.4倍以上CPU性能提升

UP Squared Pro 7000

UP Squared Pro 7000采用Intel Core/Atom/N-系列處理器,CPU性能是上一代的1.4倍。UP Squared Pro 7000擁有多達8個Gracemont內核,支持Intel Distribution of OpenVINO Toolkit,以及第12代Intel處理器的UHD顯卡,擁有強大的計算能力、優化的推理引擎和圖像處理功能,提供絕佳的智能解決方案。

同步支持3臺4K顯示器

UP Squared Pro 7000

UP Squared Pro 7000配備HDMI 2.0b、DP 1.2端口和通過USB Type-C的DP 1.4a,擁有出色的顯示接口。UP Squared Pro 7000整合了GPU和多重輸出,可以同步支持三個4K顯示器,非常適合用于數字廣告牌等視覺導向型的相關應用。

雙倍的高速系統內存

UP Squared Pro 7000

作為UP Squared Pro系列中第一塊配備板載LPDDR5系統內存的板卡,UP Squared Pro 7000搭載了16GB的系統內存,是上一代的兩倍。此外,快達4800MHz的內存速度讓用戶的帶寬和數據傳輸速度加倍,同時也更加省電。

全面的I/O升級

UP Squared Pro 7000

除了維持UP Squared Pro系列4" x 4"的緊湊外形之外,UP Squared Pro 7000在電路板設計上更為精實。UP Squared Pro 7000配備了兩個2.5GbE、三個 USB 3.2和一個 FPC 端口,可外接更多像是MIPI CSI 相機的外圍設備。將這些特色與板載LPDDR5及性能強大的CPU相結合,非常適合用于智慧工廠機器人方面的視覺解決方案。

產 品 簡 介

07917e5c-4afc-11ee-a20b-92fbcf53809c.jpg07a959aa-4afc-11ee-a20b-92fbcf53809c.jpg07c9e1ca-4afc-11ee-a20b-92fbcf53809c.jpg07d901c8-4afc-11ee-a20b-92fbcf53809c.jpg07f2c82e-4afc-11ee-a20b-92fbcf53809c.jpg

Intel Atom x7000E系列,Intel處理器N系列 和Intel Core i3-N305處理器(代號為Alder Lake N)

板載LPDDR5內存,最大支持16GB

板載eMMC內存,最大支持64GB

2.5GbE x 2 (Inteli226-IT)

USB 3.2 x 3 (Type A x 2, Type C x 1)

40針GPIO x 1

DP 1.2 x 1 / DP 1.4a x 1 / HDMI 2.0b

RS232 / 422 / 485 wafer連接器 x 2

M.2 2230 E-Key / M.2 2280 M-Key / M.2 3052 B-Key x 1

SATA3 x 1

TPM 2.0

12V直流輸入,6A

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電路板
    +關注

    關注

    140

    文章

    5117

    瀏覽量

    102244
  • 神經網絡
    +關注

    關注

    42

    文章

    4812

    瀏覽量

    103289
  • 網絡
    +關注

    關注

    14

    文章

    7801

    瀏覽量

    90682
  • 模型
    +關注

    關注

    1

    文章

    3507

    瀏覽量

    50252
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡深度學習的關系

    ),是一種多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小化
    的頭像 發表于 02-12 15:15 ?814次閱讀

    如何訓練BP神經網絡模型

    BP(Back Propagation)神經網絡是一種經典的人工神經網絡模型,其訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP
    的頭像 發表于 02-12 15:10 ?855次閱讀

    直播預約 |數據智能系列講座第4期:訓練的基礎模型下的持續學習

    ,特別是訓練的基礎模型研究得到了廣泛的應用,但其仍然主要依賴于在大量樣本上的批量式訓練。本報告將探討實現模型的增量式
    的頭像 發表于 10-18 08:09 ?558次閱讀
    直播預約 |數據智能系列講座第4期:<b class='flag-5'>預</b><b class='flag-5'>訓練</b>的基礎<b class='flag-5'>模型</b>下的持續學習

    【飛凌嵌入式OK3576-C開發板體驗】RKNN神經網絡算法開發環境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數據集,在深度神經網絡算法中,
    發表于 10-10 09:28

    FPGA在深度神經網絡中的應用

    隨著人工智能技術的飛速發展,深度神經網絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統的深度神經網絡
    的頭像 發表于 07-24 10:42 ?1168次閱讀

    如何使用經過訓練神經網絡模型

    使用經過訓練神經網絡模型是一個涉及多個步驟的過程,包括數據準備、模型加載、預測執行以及后續優化等。
    的頭像 發表于 07-12 11:43 ?1881次閱讀

    殘差網絡深度神經網絡

    殘差網絡(Residual Network,通常簡稱為ResNet) 是深度神經網絡的一種 ,其獨特的結構設計在解決深層網絡訓練中的梯度消失
    的頭像 發表于 07-11 18:13 ?1570次閱讀

    怎么對神經網絡重新訓練

    重新訓練神經網絡是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別等領域。然而,隨著時間的推移,數據分布可
    的頭像 發表于 07-11 10:25 ?840次閱讀

    pytorch中有神經網絡模型

    處理、語音識別等領域取得了顯著的成果。PyTorch是一個開源的深度學習框架,由Facebook的AI研究團隊開發。它以其易用性、靈活性和高效性而受到廣泛歡迎。在PyTorch中,有許多訓練
    的頭像 發表于 07-11 09:59 ?1709次閱讀

    PyTorch神經網絡模型構建過程

    PyTorch,作為一個廣泛使用的開源深度學習庫,提供了豐富的工具和模塊,幫助開發者構建、訓練和部署神經網絡模型。在
    的頭像 發表于 07-10 14:57 ?890次閱讀

    如何利用Matlab進行神經網絡訓練

    Matlab作為一款強大的數學計算軟件,廣泛應用于科學計算、數據分析、算法開發等領域。其中,Matlab的神經網絡工具箱(Neural Network Toolbox)為用戶提供了豐富的函數和工具
    的頭像 發表于 07-08 18:26 ?3609次閱讀

    人工神經網絡模型訓練的基本原理

    人工神經網絡(Artificial Neural Networks,簡稱ANNs)是一種受生物神經網絡啟發而構建的數學模型,用于模擬人腦處理信息的方式。它在機器學習和深度學習領域具有廣
    的頭像 發表于 07-05 09:16 ?1326次閱讀

    深度神經網絡與基本神經網絡的區別

    在探討深度神經網絡(Deep Neural Networks, DNNs)與基本神經網絡(通常指傳統神經網絡或前向神經網絡)的區別時,我們需
    的頭像 發表于 07-04 13:20 ?1757次閱讀

    bp神經網絡深度神經網絡

    BP神經網絡(Backpropagation Neural Network)是一種常見的前饋神經網絡,它使用反向傳播算法來訓練網絡。雖然BP神經網絡
    的頭像 發表于 07-03 10:14 ?1367次閱讀

    卷積神經網絡訓練的是什么

    訓練過程以及應用場景。 1. 卷積神經網絡的基本概念 1.1 卷積神經網絡的定義 卷積神經網絡是一種前饋深度學習
    的頭像 發表于 07-03 09:15 ?925次閱讀