女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡三大特點

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀

卷積神經網絡三大特點

卷積神經網絡(Convolutional Neural Network,CNN)是一種深度學習模型,其具有三大特點:局部感知、參數共享和下采樣。

一、局部感知
卷積神經網絡是一種基于圖像處理的神經網絡,它模仿人類視覺結構中的神經元組成,對圖像進行處理和學習。在圖像處理中,通常將圖像看作是二維矩陣,即每個像素點都有其對應的坐標和像素值。卷積神經網絡采用卷積操作實現圖像的特征提取,具有“局部感知”的特點。

從直覺上理解,卷積神經網絡在處理圖像時會先提取圖像的局部特征,然后將這些局部特征組合成整體的特征表示。這樣做的好處是可以保留圖像的本地信息,這些信息對于圖像識別和分類非常重要。在卷積神經網絡中,局部感知的表現形式是濾波器(filter)的概念。濾波器相當于一組權重矩陣,用來計算輸入圖像某個位置的特征響應,其計算方式為卷積操作。濾波器尺寸一般小于輸入圖像尺寸,通常使用的常見尺寸為 3×3 或 5×5。

二、參數共享
在卷積神經網絡中,參數共享是指某個特征圖中的所有神經元使用相同的權值和偏置。對于一張輸入圖像,經過多次卷積操作后得到了多個特征圖,每個特征圖中的所有神經元共享同一組權值和偏置。這種參數共享的設計方式能夠大大減少模型的參數數量和運算時間,進而提升模型的效率。


參數共享的優勢不僅在于模型大小的減小,更重要的是其實現了對不同位置上的局部特征的相同處理。因為圖像中相近的局部區域存在相關性,不同位置上的相同濾波器可以共享重復計算的過程,從而大大提高計算效率。

三、下采樣
在卷積神經網絡中,下采樣(pooling)是指在特征映射上定期地探索每個子區域,并簡化映射內容,將多個相鄰像素的值合并成一個值。下采樣有兩種常用的方式:最大池化(Max Pooling)和平均池化(Average Pooling)。

1. 最大池化
最大池化是指對某個覆蓋區域內的特征值進行取最大值

以 2 × 2 的池化窗口為例,將輸入的特征圖覆蓋成多個子區域,對于每個子區域,最大池化會將四個元素中的最大值作為輸出。這種方法可以提取出特征圖中的最顯著特征,如邊緣和角點等。

2. 平均池化
平均池化是指對某個覆蓋區域內的特征值進行取平均值,

與最大池化相似,平均池化也會分割輸入特征圖為多個子區域,不過它會對每個區域中的元素進行平均池化。相對于最大池化,平均池化更加平滑,能夠處理合成圖像中的噪聲和其他無關特征。

總結:
卷積神經網絡是一種有效的圖像處理和識別模型。其三大特點:局部感知、參數共享和下采樣,都是為了提高圖像處理和特征提取的效率。卷積神經網絡通過局部感知保留了圖像的本地信息,通過參數共享大大減少了模型的參數數量和運算時間,通過下采樣探索了特征映射上的每個子區域,并對其進行簡化,提高了模型的精度和泛化能力。這三大特點的綜合運用,使卷積神經網絡在圖像處理和識別領域大放異彩。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 濾波器
    +關注

    關注

    162

    文章

    8076

    瀏覽量

    181076
  • 圖像處理
    +關注

    關注

    27

    文章

    1325

    瀏覽量

    57728
  • 卷積神經網絡

    關注

    4

    文章

    369

    瀏覽量

    12199
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    BP神經網絡卷積神經網絡的比較

    BP神經網絡卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP
    的頭像 發表于 02-12 15:53 ?502次閱讀

    卷積神經網絡與傳統神經網絡的比較

    神經網絡,也稱為全連接神經網絡(Fully Connected Neural Networks,FCNs),其特點是每一層的每個神經元都與下一層的所有
    的頭像 發表于 11-15 14:53 ?1631次閱讀

    卷積神經網絡的基本概念、原理及特點

    的基本概念、原理、特點以及在不同領域的應用情況。 一、卷積神經網絡的基本概念 卷積神經網絡是一種深度學習算法,它由多層
    的頭像 發表于 07-11 14:38 ?2259次閱讀

    BP神經網絡卷積神經網絡的關系

    廣泛應用的神經網絡模型。它們各自具有獨特的特點和優勢,并在不同的應用場景中發揮著重要作用。以下是對BP神經網絡卷積神經網絡關系的詳細探討,
    的頭像 發表于 07-10 15:24 ?2295次閱讀

    循環神經網絡卷積神經網絡的區別

    結構。它們在處理不同類型的數據和解決不同問題時具有各自的優勢和特點。本文將從多個方面比較循環神經網絡卷積神經網絡的區別。 基本概念 循環神經網絡
    的頭像 發表于 07-04 14:24 ?1931次閱讀

    卷積神經網絡的實現原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 10:49 ?1014次閱讀

    bp神經網絡卷積神經網絡區別是什么

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經網絡
    的頭像 發表于 07-03 10:12 ?2460次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:40 ?883次閱讀

    cnn卷積神經網絡特點是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。CNN具有以下特點: 局
    的頭像 發表于 07-03 09:26 ?2757次閱讀

    卷積神經網絡激活函數的作用

    起著至關重要的作用,它們可以增加網絡的非線性,提高網絡的表達能力,使網絡能夠學習到更加復雜的特征。本文將詳細介紹卷積神經網絡中激活函數的作用
    的頭像 發表于 07-03 09:18 ?1758次閱讀

    卷積神經網絡訓練的是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:15 ?857次閱讀

    卷積神經網絡的原理與實現

    核心思想是通過卷積操作提取輸入數據的特征。與傳統的神經網絡不同,卷積神經網絡具有參數共享和局部連接的特點,這使得其在處理圖像等高維數據時具有
    的頭像 發表于 07-02 16:47 ?1166次閱讀

    卷積神經網絡的基本結構及其功能

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡的基
    的頭像 發表于 07-02 14:45 ?3347次閱讀

    卷積神經網絡的原理是什么

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹卷積神經網絡的原
    的頭像 發表于 07-02 14:44 ?1209次閱讀

    卷積神經網絡和bp神經網絡的區別

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)和BP神經網絡(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發表于 07-02 14:24 ?5911次閱讀