RKNN(Rockchip Neural Network)是一種用于嵌入式設(shè)備的深度學習推理框架,它提供了一個端到端的解決方案,用于將訓練好的深度學習模型轉(zhuǎn)換為在嵌入式設(shè)備上運行的可執(zhí)行文件。使用RKNN框架可以在嵌入式設(shè)備上高效地運行深度學習模型,這對于需要在資源受限的設(shè)備上進行實時推理的應(yīng)用場景非常有用。例如,可以將RKNN用于智能攝像頭、機器人、無人機等嵌入式設(shè)備中,實現(xiàn)物體檢測、人臉識別、圖像分類等人工智能功能。
RKNN-Toolkit2是為用戶提供在 PC、 Rockchip NPU 平臺上進行模型轉(zhuǎn)換、推理和性能評估的開發(fā)套件,用戶通過該工具提供的 Python 接口可以便捷地完成模型轉(zhuǎn)換、量化功能、模型推理、性能和內(nèi)存評估以及量化精度分析等多種操作。
下面,我們就使用RKNN-Toolkit2工具將rknpu2工程中的yolov5s.onnx模型轉(zhuǎn)換為yolov5s.rknn模型為例進行講解。
開發(fā)工具:飛凌嵌入式OK3588-C開發(fā)板
開發(fā)環(huán)境:Ubuntu20.04
01:下載RKNN-Toolkit2

02:安裝依賴
requirements_cp36-1.3.0.txt文件,在rknn-toolkit2/doc目錄下:

03:開發(fā)環(huán)境與OK3588-C開發(fā)板連接
開發(fā)環(huán)境中安裝adb

使用USB-typeC線連接到板子的TypeC0接口,PC端識別到虛擬機中。
在開發(fā)環(huán)境中檢查是否連接成功

如果連接成功會返回板子的設(shè)備ID,如下:

04:下載NPU工程

05:將rknn_server和rknn庫發(fā)送到開發(fā)板

在OK3588-C開發(fā)板上運行rknn_server服務(wù)

在開發(fā)環(huán)境中檢測rknn_server是否運行成功

有返回進程id說明運行成功。
06:模型轉(zhuǎn)換
在開發(fā)環(huán)境中進入到rknn_toolkit2工具中的examples目錄中選擇一個模型。本例選擇的是將onnx模型轉(zhuǎn)換為RKNN模型。
修改test.py

在rknn.config中添加target_platform='rk3588'
在rknn.init_runtime中添加target='rk3588'
修改完成后,運行test.py

運行成功結(jié)果如下:


同時在目錄下會生成yolov5s.rknn模型。

07:編譯測試源碼
進入到rknpu2/examples/rknn_yolov5_demo目錄下,設(shè)置環(huán)境變量:

執(zhí)行編譯腳本,進行編譯:

然后在rknpu2/examples/rknn_yolov5_demo/install/rknn_yolov5_demo_Linux目錄下會生成rknn_yolov5_demo

08:測試
將上邊生成的yolov5s.rknn模型和install目錄下的rknn_yolov5_demo_Linux拷貝到開發(fā)板中

進入到rknn_yolov5_demo_Linux目錄下,添加鏈接庫的環(huán)境變量(rknn_yolov5_demo_Linux目錄下的lib目錄)

使用rknn模型進行物體識別命令如下:

執(zhí)行結(jié)果如下:

將生成的out.jpg拷貝到本地電腦中查看,識別結(jié)果如下。

以上就是基于飛凌嵌入式OK3588-C開發(fā)板進行的RK3588推理模型轉(zhuǎn)換及測試過程,希望能夠?qū)δ兴鶐椭?/p>
-
測試
+關(guān)注
關(guān)注
8文章
5692瀏覽量
128803 -
開發(fā)板
+關(guān)注
關(guān)注
25文章
5671瀏覽量
104535 -
RK3588
+關(guān)注
關(guān)注
7文章
419瀏覽量
5891
發(fā)布評論請先 登錄
如何用AI實現(xiàn)電池壽命的精準預(yù)測?飛凌RK3588+融合算法給你答案

技術(shù)分享|iTOP-RK3588開發(fā)板Ubuntu20系統(tǒng)旋轉(zhuǎn)屏幕方案

RK3588 EVB開發(fā)板原理圖講解【八】 RK3588 power Tree
RK3588開發(fā)板上部署DeepSeek-R1大模型的完整指南
Banana Pi開源社區(qū)基于瑞芯微RK3588開發(fā)板,DeepSeek開發(fā)利器

添越智創(chuàng)基于 RK3588 開發(fā)板部署測試 DeepSeek 模型全攻略
迅為瑞芯微RK3588開發(fā)板深度剖析丨首選的性能
瑞芯微RK3588開發(fā)板Linux系統(tǒng)添加自啟動命令的方法,深圳觸覺智能Arm嵌入式鴻蒙硬件方案商

評論