女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

超詳細!一文講透機器視覺常用的 3 種“目標識別”方法

穎脈Imgtec ? 2022-12-15 10:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:機器視覺沙龍


隨著機器視覺技術(shù)的快速發(fā)展,傳統(tǒng)很多需要人工來手動操作的工作,漸漸地被機器所替代。傳統(tǒng)方法做目標識別大多都是靠人工實現(xiàn),從形狀、顏色、長度、寬度、長寬比來確定被識別的目標是否符合標準,最終定義出一系列的規(guī)則來進行目標識別。這樣的方法當然在一些簡單的案例中已經(jīng)應(yīng)用的很好,唯一的缺點是隨著被識別物體的變動,所有的規(guī)則和算法都要重新設(shè)計和開發(fā),即使是同樣的產(chǎn)品,不同批次的變化都會造成不能重用的現(xiàn)實。而隨著機器學習深度學習的發(fā)展,很多肉眼很難去直接量化的特征,深度學習可以自動學習這些特征,這就是深度學習帶給我們的優(yōu)點和前所未有的吸引力。很多特征我們通過傳統(tǒng)算法無法量化,或者說很難去做到的,深度學習可以。特別是在圖像分類、目標識別這些問題上有顯著的提升。視覺常用的目標識別方法有三種:Blob分析法(BlobAnalysis)、模板匹配法、深度學習法。下面就三種常用的目標識別方法進行對比。


Blob分析法

BlobAnalysis

計算機視覺中的Blob是指圖像中的具有相似顏色、紋理等特征所組成的一塊連通區(qū)域。Blob分析(BlobAnalysis)是對圖像中相同像素的連通域進行分析(該連通域稱為Blob)。其過程就是將圖像進行二值化,分割得到前景和背景,然后進行連通區(qū)域檢測,從而得到Blob塊的過程。簡單來說,blob分析就是在一塊“光滑”區(qū)域內(nèi),將出現(xiàn)“灰度突變”的小區(qū)域?qū)ふ页鰜怼?br />

舉例來說,假如現(xiàn)在有一塊剛生產(chǎn)出來的玻璃,表面非常光滑,平整。如果這塊玻璃上面沒有瑕疵,那么,我們是檢測不到“灰度突變”的;相反,如果在玻璃生產(chǎn)線上,由于種種原因,造成了玻璃上面有一個凸起的小泡、有一塊黑斑、有一點裂縫,那么,我們就能在這塊玻璃上面檢測到紋理,經(jīng)二值化(BinaryThresholding)處理后的圖像中色斑可認為是blob。而這些部分,就是生產(chǎn)過程中造成的瑕疵,這個過程,就是Blob分析。

Blob分析工具可以從背景中分離出目標,并可以計算出目標的數(shù)量、位置、形狀、方向和大小,還可以提供相關(guān)斑點間的拓撲結(jié)構(gòu)。在處理過程中不是對單個像素逐一分析,而是對圖像的行進行操作。圖像的每一行都用游程長度編碼(RLE)來表示相鄰的目標范圍。這種算法與基于像素的算法相比,大大提高了處理的速度。

de77d428-7c0f-11ed-b116-dac502259ad0.png

但另一方面,Blob分析并不適用于以下圖像:1.低對比度圖像;2.必要的圖像特征不能用2個灰度級描述;3.按照模版檢測(圖形檢測需求)。

總的來說,Blob分析就是檢測圖像的斑點,適用于背景單一,前景缺陷不區(qū)分類別,識別精度要求不高的場景。


模板匹配法

template matching

模板匹配是一種最原始、最基本的模式識別方法,研究某一特定對象物的圖案位于圖像的什么地方,進而識別對象物,這就是一個匹配問題。它是圖像處理中最基本、最常用的匹配方法。換句話說就是一副已知的需要匹配的小圖像,在一副大圖像中搜尋目標,已知該圖中有要找的目標,且該目標同模板有相同的尺寸、方向和圖像元素,通過統(tǒng)計計算圖像的均值、梯度、距離、方差等特征可以在圖中找到目標,確定其坐標位置。

這就說明,我們要找的模板是圖像里標標準準存在的,這里說的標標準準,就是說,一旦圖像或者模板發(fā)生變化,比如旋轉(zhuǎn),修改某幾個像素,圖像翻轉(zhuǎn)等操作之后,我們就無法進行匹配了,這也是這個算法的弊端。

所以這種匹配算法,就是在待檢測圖像上,從左到右,從上向下對模板圖像與小東西的圖像進行比對。

de8ad118-7c0f-11ed-b116-dac502259ad0.png

這種方法相比Blob分析有較好的檢測精度,同時也能區(qū)分不同的缺陷類別,這相當于是一種搜索算法,在待檢測圖像上根據(jù)不同roi用指定的匹配方法與模板庫中的所有圖像進行搜索匹配,要求缺陷的形狀、大小、方法都有較高的一致性,因此想要獲得可用的檢測精度需要構(gòu)建較完善的模板庫。


深度學習法

deep learning method

2014年R-CNN的提出,使得基于CNN的目標檢測算法逐漸成為主流。深度學習的應(yīng)用,使檢測精度和檢測速度都獲得了改善。

卷積神經(jīng)網(wǎng)絡(luò)不僅能夠提取更高層、表達能力更好的特征,還能在同一個模型中完成對于特征的提取、選擇和分類。

在這方面,主要有兩類主流的算法:

一類是結(jié)合RPN網(wǎng)絡(luò)的,基于分類的R-CNN系列兩階目標檢測算法(twostage);

另一類則是將目標檢測轉(zhuǎn)換為回歸問題的一階目標檢測算法(singlestage)。

物體檢測的任務(wù)是找出圖像或視頻中的感興趣物體,同時檢測出它們的位置和大小,是機器視覺領(lǐng)域的核心問題之一。

dea32e34-7c0f-11ed-b116-dac502259ad0.png

物體檢測過程中有很多不確定因素,如圖像中物體數(shù)量不確定,物體有不同的外觀、形狀、姿態(tài),加之物體成像時會有光照、遮擋等因素的干擾,導致檢測算法有一定的難度。

進入深度學習時代以來,物體檢測發(fā)展主要集中在兩個方向:twostage算法如R-CNN系列和onestage算法如YOLO、SSD等。兩者的主要區(qū)別在于twostage算法需要先生成proposal(一個有可能包含待檢物體的預選框),然后進行細粒度的物體檢測。而onestage算法會直接在網(wǎng)絡(luò)中提取特征來預測物體分類和位置。

兩階算法中區(qū)域提取算法核心是卷積神經(jīng)網(wǎng)絡(luò)CNN,先利用CNN骨干提取特征,然后找出候選區(qū)域,最后滑動窗口確定目標類別與位置。R-CNN首先通過SS算法提取2k個左右的感興趣區(qū)域,再對感興趣區(qū)域進行特征提取。存在缺陷:感興趣區(qū)域彼此之間權(quán)值無法共享,存在重復計算,中間數(shù)據(jù)需單獨保存占用資源,對輸入圖片強制縮放影響檢測準確度。dee480dc-7c0f-11ed-b116-dac502259ad0.png

SPP-NET在最后一個卷積層和第一個全連接層之間做些處理,保證輸入全連接層的尺寸一致即可解決輸入圖像尺寸受限的問題。SPP-NET候選區(qū)域包含整張圖像,只需通過一次卷積網(wǎng)絡(luò)即可得到整張圖像和所有候選區(qū)域的特征。

FastR-CNN借鑒SPP-NET的特征金字塔,提出ROIPooling把各種尺寸的候選區(qū)域特征圖映射成統(tǒng)一尺度的特征向量,首先,將不同大小的候選區(qū)域都切分成M×N塊,再對每塊都進行maxpooling得到1個值。這樣,所有候選區(qū)域特征圖就都統(tǒng)一成M×N維的特征向量了。但是,利用SS算法產(chǎn)生候選框?qū)r間消耗非常大。

FasterR-CNN是先用CNN骨干網(wǎng)提取圖像特征,由RPN網(wǎng)絡(luò)和后續(xù)的檢測器共享,特征圖進入RPN網(wǎng)絡(luò)后,對每個特征點預設(shè)9個不同尺度和形狀的錨盒,計算錨盒和真實目標框的交并比和偏移量,判斷該位置是否存在目標,將預定義的錨盒分為前景或背景,再根據(jù)偏差損失訓練RPN網(wǎng)絡(luò),進行位置回歸,修正ROI的位置,最后將修正的ROI傳入后續(xù)網(wǎng)絡(luò)。但是,在檢測過程中,RPN網(wǎng)絡(luò)需要對目標進行一次回歸篩選以區(qū)分前景和背景目標,后續(xù)檢測網(wǎng)絡(luò)對RPN輸出的ROI再一次進行細分類和位置回歸,兩次計算導致模型參數(shù)量大。

MaskR-CNN在FasterR-CNN中加了并行的mask分支,對每個ROI生成一個像素級別的二進制掩碼。在FasterR-CNN中,采用ROIPooling產(chǎn)生統(tǒng)一尺度的特征圖,這樣再映射回原圖時就會產(chǎn)生錯位,使像素之間不能精準對齊。這對目標檢測產(chǎn)生的影響相對較小,但對于像素級的分割任務(wù),誤差就不容忽視了。MaskR-CNN中用雙線性插值解決像素點不能精準對齊的問題。但是,由于繼承兩階段算法,實時性仍不理想。

一階算法在整個卷積網(wǎng)絡(luò)中進行特征提取、目標分類和位置回歸,通過一次反向計算得到目標位置和類別,在識別精度稍弱于兩階段目標檢測算法的前提下,速度有了極大的提升。

YOLOv1把輸入圖像統(tǒng)一縮放到448×448×3,再劃分為7×7個網(wǎng)格,每格負責預測兩個邊界框bbox的位置和置信度。這兩個b-box對應(yīng)同一個類別,一個預測大目標,一個預測小目標。bbox的位置不需要初始化,而是由YOLO模型在權(quán)重初始化后計算出來的,模型在訓練時隨著網(wǎng)絡(luò)權(quán)重的更新,調(diào)整b-box的預測位置。但是,該算法對小目標檢測不佳,每個網(wǎng)格只能預測一個類別。

YOLOv2把原始圖像劃分為13×13個網(wǎng)格,通過聚類分析,確定每個網(wǎng)格設(shè)置5個錨盒,每個錨盒預測1個類別,通過預測錨盒和網(wǎng)格之間的偏移量進行目標位置回歸。

SSD保留了網(wǎng)格劃分方法,但從基礎(chǔ)網(wǎng)絡(luò)的不同卷積層提取特征。隨著卷積層數(shù)的遞增,錨盒尺寸設(shè)置由小到大,以此提升SSD對多尺度目標的檢測精度。

YOLOv3通過聚類分析,每個網(wǎng)格預設(shè)3個錨盒,只用darknet前52層,并大量使用殘差層。使用降采樣降低池化對梯度下降的負面效果。YOLOv3通過上采樣提取深層特征,使其與將要融合的淺層特征維度相同,但通道數(shù)不同,在通道維度上進行拼接實現(xiàn)特征融合,融合了13×13×255、26×26×255和52×52×255共3個尺度的特征圖,對應(yīng)的檢測頭也都采用全卷積結(jié)構(gòu)。

YOLOv4在原有YOLO目標檢測架構(gòu)的基礎(chǔ)上,采用了近些年CNN領(lǐng)域中最優(yōu)秀的優(yōu)化策略,從數(shù)據(jù)處理、主干網(wǎng)絡(luò)、網(wǎng)絡(luò)訓練、激活函數(shù)、損失函數(shù)等各個方面都進行了不同程度的優(yōu)化。時至今日,已經(jīng)有很多精度比較高的目標檢測算法提出,包括最近視覺領(lǐng)域的transformer研究也一直在提高目標檢測算法的精度。

總結(jié)來看,表示的選擇會對機器學習算法的性能產(chǎn)生巨大的影響,監(jiān)督學習訓練的前饋網(wǎng)絡(luò)可視為表示學習的一種形式。依此來看傳統(tǒng)的算法如Blob分析和模板匹配都是手工設(shè)計其特征表示,而神經(jīng)網(wǎng)絡(luò)則是通過算法自動學習目標的合適特征表示,相比手工特征設(shè)計來說其更高效快捷,也無需太多的專業(yè)的特征設(shè)計知識,因此其能夠識別不同場景中形狀、大小、紋理等不一的目標,隨著數(shù)據(jù)集的增大,檢測的精度也會進一步提高。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器視覺
    +關(guān)注

    關(guān)注

    163

    文章

    4597

    瀏覽量

    122903
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    人形機器3D 視覺路線之爭:激光雷達、雙目和 3D - ToF 誰更勝籌?

    電子發(fā)燒友網(wǎng)報道( / 吳子鵬)在人形機器人的設(shè)計方案中,3D 視覺技術(shù)是實現(xiàn)環(huán)境感知與智能化決策的核心支撐之。它能夠助力人形
    的頭像 發(fā)表于 04-15 00:14 ?2712次閱讀

    帶你了解什么是機器視覺網(wǎng)卡

    機器視覺網(wǎng)卡通常指的是在機器視覺系統(tǒng)中用于連接工業(yè)相機到計算機的以太網(wǎng)卡。它的核心作用是實現(xiàn)高速、穩(wěn)定、低延遲的圖像數(shù)據(jù)傳輸。以下是關(guān)于機器
    的頭像 發(fā)表于 07-09 16:18 ?147次閱讀
    <b class='flag-5'>一</b><b class='flag-5'>文</b>帶你了解什么是<b class='flag-5'>機器</b><b class='flag-5'>視覺</b>網(wǎng)卡

    基于LockAI視覺識別模塊:手寫數(shù)字識別

    1.1 手寫數(shù)字識別簡介 手寫數(shù)字識別一種利用計算機視覺機器學習技術(shù)自動識別手寫數(shù)字的過程
    發(fā)表于 06-30 16:45

    基于LockAI視覺識別模塊:C++目標檢測

    檢測是計算機視覺領(lǐng)域中的個關(guān)鍵任務(wù),它不僅需要識別圖像中存在哪些對象,還需要定位這些對象的位置。具體來說,目標檢測算法會輸出每個檢測到的對象的邊界框(Bounding Box)以及其
    發(fā)表于 06-06 14:43

    基于LockAI視覺識別模塊:C++目標檢測

    本文檔基于瑞芯微RV1106的LockAI凌智視覺識別模塊,通過C++語言做的目標檢測實驗。本文檔展示了如何使用lockzhiner_vision_module::PaddleDet類進行目標
    的頭像 發(fā)表于 06-06 13:56 ?219次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:C++<b class='flag-5'>目標</b>檢測

    基于LockAI視覺識別模塊:C++條碼識別

    條碼識別視覺模塊經(jīng)常使用到的功能之,經(jīng)常用識別超市的貨物信息。本文我們將演示如何基于瑞芯微RV1106的LockAI
    的頭像 發(fā)表于 05-27 09:32 ?162次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:C++條碼<b class='flag-5'>識別</b>

    詳細介紹機場智能指路機器人的工作原理

    ,如激光雷達、攝像頭、麥克風等。激光雷達通過發(fā)射激光束并測量反射光的時間來創(chuàng)建周圍環(huán)境的三維點云圖,從而感知周圍物體的距離和位置。攝像頭用于捕捉視覺圖像,識別機場環(huán)境中的標識、人物和其他物體。麥克風則
    發(fā)表于 05-10 18:26

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎(chǔ)算法的應(yīng)用

    機器視覺:從理論到實踐 第7章詳細介紹了ROS2在機器視覺領(lǐng)域的應(yīng)用,涵蓋了相機標定、
    發(fā)表于 05-03 19:41

    基于 RFID 技術(shù)的某部隊編目標識高效識別與協(xié)同管控系統(tǒng)建設(shè)方案

    、高頻率的業(yè)務(wù)處理挑戰(zhàn)。鑒于此,為顯著提升工作效率、精準化管理水平及合理調(diào)配資源,打造套高端、智能的目標識別系統(tǒng)成為當務(wù)之急。 1.2 建設(shè)愿景展望 本項目將致力于采用尖端的識別技術(shù),確保對各類
    的頭像 發(fā)表于 04-18 16:50 ?252次閱讀
    基于 RFID 技術(shù)的某部隊編<b class='flag-5'>目標識</b>高效<b class='flag-5'>識別</b>與協(xié)同管控系統(tǒng)建設(shè)方案

    全基礎(chǔ)知識3機器視覺系統(tǒng)硬件組成之工業(yè)LED光源篇--51camera

    弄懂機器視覺LED光源
    的頭像 發(fā)表于 12-18 16:34 ?1324次閱讀
    【<b class='flag-5'>超</b>全基礎(chǔ)知識<b class='flag-5'>3</b>】<b class='flag-5'>機器</b><b class='flag-5'>視覺</b>系統(tǒng)硬件組成之工業(yè)LED光源篇--51camera

    適用于機器視覺應(yīng)用的智能機器視覺控制平臺

    工控機在機器視覺系統(tǒng)設(shè)計中是不可或缺的核心組件,在機器視覺中發(fā)揮著至關(guān)重要的作用,其強大的計算能力、高度的穩(wěn)定性和可靠性、實時性以及圖像處理和識別
    的頭像 發(fā)表于 11-23 01:08 ?551次閱讀
    適用于<b class='flag-5'>機器</b><b class='flag-5'>視覺</b>應(yīng)用的智能<b class='flag-5'>機器</b><b class='flag-5'>視覺</b>控制平臺

    人形機器常用的四類感知傳感器:視覺、力/力矩、觸覺、IMU

    隨著科技的飛速發(fā)展,人形機器人正逐步從科幻電影走進現(xiàn)實生活,成為未來智能社會的重要組成部分。它們不僅能夠執(zhí)行復雜的任務(wù),還能與人類進行自然交互,這切都離不開先進的傳感器技術(shù)。在人形機器人的感知系統(tǒng)
    的頭像 發(fā)表于 11-14 16:44 ?3335次閱讀
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>講</b><b class='flag-5'>透</b>人形<b class='flag-5'>機器</b>人<b class='flag-5'>常用</b>的四類感知傳感器:<b class='flag-5'>視覺</b>、力/力矩、觸覺、IMU

    機器視覺要面臨的挑戰(zhàn)及其解決方法

    機器視覺是指使用計算機和圖像處理技術(shù)從圖像中提取信息,并將其轉(zhuǎn)換為機器可理解的格式。這種方法已經(jīng)被廣泛應(yīng)用于自動化生產(chǎn)、質(zhì)量控制、測量和檢測等領(lǐng)域。然而,
    的頭像 發(fā)表于 11-11 01:03 ?995次閱讀

    深度識別與多目標識別傳感器的區(qū)別

    深度識別與多目標識別是兩個在計算機視覺和傳感器技術(shù)領(lǐng)域中非常重要的概念。它們在自動駕駛、機器人導航、工業(yè)自動化、安防監(jiān)控等多個領(lǐng)域有著廣泛的應(yīng)用。 深度
    的頭像 發(fā)表于 09-10 14:52 ?802次閱讀

    視覺檢測是什么意思?機器視覺檢測的適用行業(yè)及場景有哪些?

    檢測的定義與原理 機器視覺檢測,是利用光學成像、數(shù)字信號處理和計算機技術(shù),模擬人類視覺的功能,對目標物體進行自動檢測和分析的技術(shù)。它包括圖像采集、預處理、特征提取、分類
    的頭像 發(fā)表于 08-30 11:20 ?890次閱讀