女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何采用帶專用CNN加速器的AI微控制器實(shí)現(xiàn)CNN的硬件轉(zhuǎn)換

analog_devices ? 來源:未知 ? 2023-05-16 01:05 ? 次閱讀

本文重點(diǎn)解釋如何使用硬件轉(zhuǎn)換卷積神經(jīng)網(wǎng)絡(luò)(CNN),并特別介紹使用帶CNN硬件加速器的人工智能(AI)微控制器物聯(lián)網(wǎng)(IoT)邊緣實(shí)現(xiàn)人工智能應(yīng)用所帶來的好處。

AI應(yīng)用通常需要消耗大量能源,并以服務(wù)器農(nóng)場或昂貴的現(xiàn)場可編程門陣列(FPGA)為載體。AI應(yīng)用的挑戰(zhàn)在于提高計(jì)算能力的同時(shí)保持較低的功耗和成本。當(dāng)前,強(qiáng)大的智能邊緣計(jì)算正在使AI應(yīng)用發(fā)生巨大轉(zhuǎn)變。與傳統(tǒng)的基于固件的AI計(jì)算相比,以基于硬件的卷積神經(jīng)網(wǎng)絡(luò)加速器為載體的智能邊緣AI計(jì)算具備驚人的速度和強(qiáng)大的算力,開創(chuàng)了計(jì)算性能的新時(shí)代。這是因?yàn)橹悄苓吘売?jì)算能夠讓傳感器節(jié)點(diǎn)在本地自行決策而不受5GWi-Fi網(wǎng)絡(luò)數(shù)據(jù)傳輸速率的限制,為實(shí)現(xiàn)之前難以落地的新興技術(shù)和應(yīng)用場景提供了助力。例如,在偏遠(yuǎn)地區(qū),傳感器級別的煙霧/火災(zāi)探測或環(huán)境數(shù)據(jù)分析已成為現(xiàn)實(shí)。這些應(yīng)用支持電池供電,能夠工作很多年的時(shí)間。本文通過探討如何采用帶專用CNN加速器的AI微控制器實(shí)現(xiàn)CNN的硬件轉(zhuǎn)換來說明如何實(shí)現(xiàn)這些功能。

采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制器

MAX78000是一款有超低功耗CNN加速器的AI微控制器片上系統(tǒng),能在資源受限的邊緣設(shè)備或物聯(lián)網(wǎng)應(yīng)用中實(shí)現(xiàn)超低功耗的神經(jīng)網(wǎng)絡(luò)運(yùn)算。其應(yīng)用場景包括目標(biāo)檢測和分類、音頻處理、聲音分類、噪聲消除、面部識別、基于心率等健康體征分析的時(shí)間序列數(shù)據(jù)處理、多傳感器分析以及預(yù)測性維護(hù)。

圖1為MAX78000的框圖,其內(nèi)核為帶浮點(diǎn)運(yùn)算單元的Arm Cortex-M4F內(nèi)核,工作頻率高達(dá)100 MHz。為了給應(yīng)用提供足夠的存儲(chǔ)資源,MAX78000還配備了512 kB的閃存和128 kB的SRAM。該器件提供多個(gè)外部接口,例如I2C、SPI、UART,以及用于音頻的I2S。此外,器件還集成了60 MHz的RISC-V內(nèi)核,可以作為一個(gè)智能的直接存儲(chǔ)器訪問(DMA)引擎從/向各個(gè)外圍模塊和存儲(chǔ)(包括閃存和SRAM)復(fù)制/粘貼數(shù)據(jù)。由于RISC-V內(nèi)核可以對AI加速器所需的

90f36a82-f342-11ed-90ce-dac502259ad0.svg

圖1.MAX78000的結(jié)構(gòu)框圖

傳感器數(shù)據(jù)進(jìn)行預(yù)處理,因而Arm內(nèi)核在此期間可以處于深度睡眠模式。推理結(jié)果也可以通過中斷觸發(fā)Arm內(nèi)核在主應(yīng)用程序中執(zhí)行操作,通過無線傳輸傳感器數(shù)據(jù)或向用戶發(fā)送通知。

具備用于執(zhí)行卷積神經(jīng)網(wǎng)絡(luò)推理的專用硬件加速器單元是MAX7800x系列微控制器的一個(gè)顯著特征,這使其有別于標(biāo)準(zhǔn)的微控制器架構(gòu)。該CNN硬件加速器可以支持完整的CNN模型架構(gòu)以及所有必需的參數(shù)(權(quán)重和偏置),配備了64個(gè)并行處理器和一個(gè)集成存儲(chǔ)器。集成存儲(chǔ)器中的442 kB用于存儲(chǔ)參數(shù),896 kB用于存儲(chǔ)輸入數(shù)據(jù)。不僅存儲(chǔ)在SRAM中的模型和參數(shù)可以通過固件進(jìn)行調(diào)整,網(wǎng)絡(luò)也可以實(shí)時(shí)地通過固件進(jìn)行調(diào)整。器件支持的模型權(quán)重為1位、2位、4位或8位,存儲(chǔ)器支持容納多達(dá)350萬個(gè)參數(shù)。加速器的存儲(chǔ)功能使得微控制器無需在連續(xù)的數(shù)學(xué)運(yùn)算中每次都要通過總線獲取相關(guān)參數(shù)——這樣的方式通常伴有高延遲和高功耗,代價(jià)高昂。CNN加速器可以支持32層或64層的網(wǎng)絡(luò),具體層數(shù)取決于池化函數(shù)。每層的可編程圖像輸入/輸出大小最多為1024 × 1024像素。

CNN硬件轉(zhuǎn)換:功耗和推理速度比較

CNN推理是一項(xiàng)包含大型矩陣線性方程運(yùn)算的復(fù)雜計(jì)算任務(wù)。Arm Cortex-M4F微控制器的強(qiáng)大能力可以使得CNN推理在嵌入式系統(tǒng)的固件上運(yùn)行。但這種方式也有一些缺點(diǎn):在微控制器上運(yùn)行基于固件的CNN推理時(shí),計(jì)算命令和相關(guān)參數(shù)都需要先從存儲(chǔ)器中檢索再被寫回中間結(jié)果,這會(huì)造成大量功耗和時(shí)延。

表1對三種不同解決方案的CNN推理速度和功耗進(jìn)行了比較。所用的模型基于手寫數(shù)字識別訓(xùn)練集MNIST開發(fā),可對視覺輸入數(shù)據(jù)中的數(shù)字和字母進(jìn)行分類以獲得準(zhǔn)確的輸出結(jié)果。為確定功耗和速度的差異,本文對三種解決方案所需的推理時(shí)間進(jìn)行了測量。

911a6e3e-f342-11ed-90ce-dac502259ad0.png

表1.手寫數(shù)字識別的CNN推理時(shí)間和推理功耗,基于MNIST數(shù)據(jù)集

方案一使用集成Arm Cortex-M4F處理器的MAX32630進(jìn)行推理,其工作頻率為96 MHz。方案二使用MAX78000的CNN硬件加速器進(jìn)行推理,其推理速度(即數(shù)據(jù)輸入與結(jié)果輸出之間的時(shí)間)比方案一加快了400倍,每次推理所需的能量也僅為方案一的1/1100。方案三對MNIST網(wǎng)絡(luò)進(jìn)行了低功耗優(yōu)化,從而最大限度地降低了每次推理的功耗。雖然方案三推理結(jié)果的準(zhǔn)確性從99.6%下降到了95.6%,但其速度快了很多,每次推理只需0.36 ms,推理功耗降也低至僅1.1 μW。兩節(jié)AA堿性電池(總共6 Wh能量)可以支持應(yīng)用進(jìn)行500萬次的推理(忽略系統(tǒng)其它部分的功耗)。

這些數(shù)據(jù)說明了硬件加速器的強(qiáng)大計(jì)算能力可以大大助益無法利用或連接到連續(xù)電源的應(yīng)用場景。MAX78000就是這樣一款產(chǎn)品,它支持邊緣AI處理,無需大量功耗和網(wǎng)絡(luò)連接,也無需冗長的推理時(shí)間。

MAX78000 AI微控制器的使用示例

MAX78000支持多種應(yīng)用,下面本文圍繞部分用例展開討論。其中一個(gè)用例是設(shè)計(jì)一個(gè)電池供電的攝像頭,需要能檢測到視野中是否有貓出現(xiàn),并能夠通過數(shù)字輸出打開貓門允許貓進(jìn)入房屋。

圖2為該設(shè)計(jì)的示例框圖。在本設(shè)計(jì)中,RISC-V內(nèi)核會(huì)定期開啟圖像傳感器并將圖像數(shù)據(jù)加載到MAX78000的CNN加速器中。如果系統(tǒng)判斷貓出現(xiàn)的概率高于預(yù)設(shè)的閾值,則打開貓門然后回到待機(jī)模式。

9130d598-f342-11ed-90ce-dac502259ad0.svg

圖2.智能寵物門框圖

開發(fā)環(huán)境和評估套件

邊緣人工智能應(yīng)用的開發(fā)過程可分為以下幾個(gè)階段:

第一階段:AI——網(wǎng)絡(luò)的定義、訓(xùn)練和量化

第二階段:Arm固件——將第一階段生成的網(wǎng)絡(luò)和參數(shù)導(dǎo)入C/C++應(yīng)用程序,創(chuàng)建并測試固件

開發(fā)過程的第一階段涉及建模、訓(xùn)練和評估AI模型等環(huán)節(jié)。此階段開發(fā)人員可以利用開源工具,例如 PyTorch 和 TensorFlow。MAX78000的GitHub網(wǎng)頁也提供全面的資源幫助用戶在考慮其硬件規(guī)格的同時(shí)使用PyTorch構(gòu)建和訓(xùn)練AI網(wǎng)絡(luò)。網(wǎng)頁也提供一些簡單的AI網(wǎng)絡(luò)和應(yīng)用,例如面部識別(Face ID),供用戶參考。

圖3顯示了采用PyTorch進(jìn)行AI開發(fā)的典型過程。首先是對網(wǎng)絡(luò)進(jìn)行建模。必須注意的是,MAX7800x微控制器并非都配置了支持所有PyTorch數(shù)據(jù)操作的相關(guān)硬件。因此,必須首先將ADI公司提供的ai8x.py文件包含在項(xiàng)目中,該文件包含MAX78000所需的PyTorch模塊和運(yùn)算符。基于此可以進(jìn)入下一步驟構(gòu)建網(wǎng)絡(luò),使用訓(xùn)練數(shù)據(jù)對網(wǎng)絡(luò)進(jìn)行訓(xùn)練、評估和量化。這一步驟會(huì)生成一個(gè)檢查點(diǎn)文件,其中包含用于最終綜合過程的輸入數(shù)據(jù)。最后一步是將網(wǎng)絡(luò)及其參數(shù)轉(zhuǎn)換為適合CNN硬件加速器的形式。值得注意的是,雖然任何PC(筆記本、服務(wù)器等)都可用于訓(xùn)練網(wǎng)絡(luò),但如果沒有CUDA顯卡,訓(xùn)練網(wǎng)絡(luò)可能會(huì)花費(fèi)很長的時(shí)間——即使對于小型網(wǎng)絡(luò)來說也有可能需要幾天甚至幾周的時(shí)間。

開發(fā)過程的第二階段是通過將數(shù)據(jù)寫入CNN加速器并讀取結(jié)果的機(jī)制來創(chuàng)建應(yīng)用固件。第一階段創(chuàng)建的文件通過#include指令集成到C/C++項(xiàng)目中。微控制器的開發(fā)環(huán)境可使用Eclipse IDE和GNU工具鏈等開源工具。ADI公司提供的軟件開發(fā)套件(Maxim Micros SDK (Windows))也已經(jīng)包含了所有開發(fā)必需的組件和配置,包括外設(shè)驅(qū)動(dòng)以及示例說明,幫助用戶簡化應(yīng)用開發(fā)過程。

9147db76-f342-11ed-90ce-dac502259ad0.svg

圖3.AI開發(fā)過程

成功通過編譯和鏈接的項(xiàng)目可以在目標(biāo)硬件上進(jìn)行評估。ADI開發(fā)了兩種不同的硬件平臺可供選用:圖4為 MAX78000EVKIT ,圖5為 MAX78000FTHR ,一個(gè)稍小的評估板。每個(gè)評估板都配有一個(gè)VGA攝像頭和一個(gè)麥克風(fēng)。

915eb2ba-f342-11ed-90ce-dac502259ad0.jpg

圖4.MAX78000評估套件

91700948-f342-11ed-90ce-dac502259ad0.jpg

圖5.MAX78000FTHR評估套件

結(jié)論

以前,AI應(yīng)用必須以昂貴的服務(wù)器農(nóng)場或FPGA為載體,并消耗大量能源。現(xiàn)在,借助帶專用CNN加速器的MAX78000系列微控制器,AI應(yīng)用依靠單組電池供電就可以長時(shí)間運(yùn)行。MAX78000系列微控制器在能效和功耗方面的性能突破大大降低了邊緣AI的實(shí)現(xiàn)難度,使得新型邊緣AI應(yīng)用的驚人潛力得以釋放。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 亞德諾
    +關(guān)注

    關(guān)注

    6

    文章

    4680

    瀏覽量

    16232

原文標(biāo)題:如何采用帶專用CNN加速器的AI微控制器實(shí)現(xiàn)CNN的硬件轉(zhuǎn)換

文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    MAX7800X AI 微控制器開發(fā)人員資源

    加速器。 使用 MAX78000 和 MAX78002 超低功耗 AI 微控制器。MAX78000 和 MAX78002 是帶有 RISC-V 協(xié)處理和基于
    的頭像 發(fā)表于 05-14 15:09 ?529次閱讀
    MAX7800X <b class='flag-5'>AI</b> <b class='flag-5'>微控制器</b>開發(fā)人員資源

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計(jì)的人工智能微控制器技術(shù)手冊

    的Maxim超低功耗微控制器相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時(shí)功耗僅為微焦耳
    的頭像 發(fā)表于 05-08 11:42 ?144次閱讀
    MAX78000<b class='flag-5'>采用</b>超低功耗卷積神經(jīng)網(wǎng)絡(luò)<b class='flag-5'>加速</b>度計(jì)的人工智能<b class='flag-5'>微控制器</b>技術(shù)手冊

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制器技術(shù)手冊

    的Maxim超低功耗微控制器相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時(shí)功耗僅為微焦耳
    的頭像 發(fā)表于 05-08 10:16 ?95次閱讀
    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)<b class='flag-5'>加速器</b>的人工智能<b class='flag-5'>微控制器</b>技術(shù)手冊

    ADI 新型AI微控制器 # MAX78000 數(shù)據(jù)手冊和芯片介紹

    MAX78000是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證的ADI/Maxim超低功耗微控制器相結(jié)合。通過這款基于
    的頭像 發(fā)表于 02-08 16:50 ?802次閱讀
    ADI 新型<b class='flag-5'>AI</b><b class='flag-5'>微控制器</b> # MAX78000 數(shù)據(jù)手冊和芯片介紹

    STM32G474RCT6 STM32G0B1VET6 微控制器 IC MCU 32BIT FLASH LQFP

    STM32G474RCT6 混合信號微控制器 (MCU) 結(jié)合了運(yùn)行頻率為170MHz的32位Arm? Cortex?-M4內(nèi)核(FPU和DSP指令)。另外還結(jié)合了3種不同的硬件加速器:ART
    發(fā)表于 12-31 11:59

    意法半導(dǎo)體發(fā)布新一代微控制器,集成NPU加速器推動(dòng)邊緣AI

    全球領(lǐng)先的半導(dǎo)體公司意法半導(dǎo)體(STMicroelectronics,簡稱ST)近日宣布推出全新系列微控制器,這是其首款集成機(jī)器學(xué)習(xí)(ML)加速器的產(chǎn)品。此舉標(biāo)志著意法半導(dǎo)體在推動(dòng)邊緣人工智能(AI
    的頭像 發(fā)表于 12-23 18:13 ?837次閱讀

    從版本控制到全流程支持:揭秘Helix Core如何成為您的創(chuàng)意加速器

    加速器
    龍智DevSecOps
    發(fā)布于 :2024年11月26日 13:42:47

    適用于數(shù)據(jù)中心應(yīng)用中的硬件加速器的直流/直流轉(zhuǎn)換器解決方案

    電子發(fā)燒友網(wǎng)站提供《適用于數(shù)據(jù)中心應(yīng)用中的硬件加速器的直流/直流轉(zhuǎn)換器解決方案.pdf》資料免費(fèi)下載
    發(fā)表于 08-26 09:38 ?0次下載
    適用于數(shù)據(jù)中心應(yīng)用中的<b class='flag-5'>硬件加速器</b>的直流/直流<b class='flag-5'>轉(zhuǎn)換器</b>解決方案

    MAX78002人工智能微控制器特性亮點(diǎn)概述

    ,同時(shí)僅消耗毫焦級能量。 MAX78002 是一款先進(jìn)的片上系統(tǒng),配備 FPU CPU 的 Arm Cortex-M4,具有超低功耗深度神經(jīng)網(wǎng)絡(luò)加速器實(shí)現(xiàn)高效系統(tǒng)控制
    的頭像 發(fā)表于 07-11 09:25 ?1164次閱讀
    MAX78002人工智能<b class='flag-5'>微控制器</b>特性亮點(diǎn)概述

    CNN的定義和優(yōu)勢

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)作為深度學(xué)習(xí)領(lǐng)域的核心成員,不僅在學(xué)術(shù)界引起了廣泛關(guān)注,更在工業(yè)界尤其是計(jì)算機(jī)視覺領(lǐng)域展現(xiàn)出了巨大的應(yīng)用價(jià)值。關(guān)于
    的頭像 發(fā)表于 07-05 17:37 ?5674次閱讀

    如何利用CNN實(shí)現(xiàn)圖像識別

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)是深度學(xué)習(xí)領(lǐng)域中一種特別適用于圖像識別任務(wù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。它通過模擬人類視覺系統(tǒng)的處理方式,利用卷積、池化等操作,自動(dòng)提取圖像中的特征,進(jìn)而實(shí)現(xiàn)高效的圖像識別。本文將從CNN的基本原理、構(gòu)建過程、訓(xùn)練策略以
    的頭像 發(fā)表于 07-03 16:16 ?2418次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,由多層卷積層和池化層堆疊而成。CNN通過卷積操作提取圖像特征,并通過池化操作降低特征維度,從而實(shí)現(xiàn)對圖像
    的頭像 發(fā)表于 07-03 09:28 ?1286次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)cnn模型有哪些

    (Convolutional Layer) 卷積層是CNN的核心,用于提取圖像的局部特征。卷積操作通過滑動(dòng)窗口(濾波或卷積核)在輸入數(shù)據(jù)上進(jìn)行計(jì)算,生成特征圖(Feature Map)。卷積核的權(quán)重在訓(xùn)練
    的頭像 發(fā)表于 07-02 15:24 ?1162次閱讀

    西門子推出Catapult AI NN軟件,賦能神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)

    西門子數(shù)字化工業(yè)軟件近日發(fā)布了Catapult AI NN軟件,這款軟件在神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)領(lǐng)域邁出了重要一步。Catapult AI NN軟件專注于在專用集成電路(ASIC)和芯片級
    的頭像 發(fā)表于 06-19 11:27 ?1176次閱讀

    MCX N系列微控制器適用于安全、智能的電機(jī)控制和機(jī)器學(xué)習(xí)應(yīng)用

    ?? 貿(mào)澤電子即日起開售NXP Semiconductors的MCX工業(yè)和物聯(lián)網(wǎng)微控制器 (MCU)。這些新款MCU屬于高性能、低功耗微控制器,配備智能外設(shè)和加速器,適用于安全、智能的電機(jī)控制
    的頭像 發(fā)表于 06-05 09:06 ?1407次閱讀