女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

“伶荔”(Linly) 開源大規模中文語言模型

OSC開源社區 ? 來源:OSC開源社區 ? 2023-05-04 10:29 ? 次閱讀

為了開發高性能中文基礎模型,填補中文基礎模型百億到千億級預訓練參數的空白,大數據系統計算技術國家工程實驗室團隊在人工智能項目伶荔(Linly)框架下,推出了伶荔說系列中文語言大模型,目前包含中文基礎模型和對話模型。

其中,中文基礎模型以 LLaMA 為底座,利用中文和中英平行增量預訓練,將它在英文上強大語言能力遷移到中文上。更進一步,匯總了目前公開的多語言指令數據,對中文模型進行了大規模指令跟隨訓練,實現了 Linly-ChatFlow 對話模型。

0cbaa256-e89f-11ed-ab56-dac502259ad0.png

根據介紹,相比已有的中文開源模型,伶荔模型具有以下優勢:

在 32*A100 GPU 上訓練了不同量級和功能的中文模型,對模型充分訓練并提供強大的 baseline。據知,33B 的 Linly-Chinese-LLAMA 是目前最大的中文 LLaMA 模型。

公開所有訓練數據、代碼、參數細節以及實驗結果,確保項目的可復現性,用戶可以選擇合適的資源直接用于自己的流程中。

項目具有高兼容性和易用性,提供可用于 CUDA 和 CPU 的量化推理框架,并支持 Huggingface 格式。

目前公開可用的模型有:

Linly-Chinese-LLaMA:中文基礎模型,基于 LLaMA 在高質量中文語料上增量訓練強化中文語言能力,現已開放 7B、13B 和 33B 量級,65B 正在訓練中。

Linly-ChatFlow:中文對話模型,在 400 萬指令數據集合上對中文基礎模型指令精調,現已開放 7B、13B 對話模型。

Linly-ChatFlow-int4 :ChatFlow 4-bit 量化版本,用于在 CPU 上部署模型推理。

進行中的項目:

Linly-Chinese-BLOOM:基于 BLOOM 中文增量訓練的中文基礎模型,包含 7B 和 175B 模型量級,可用于商業場景。

項目特點

Linly 項目具有以下特點:

1. 大規模中文增量訓練,利用翻譯數據提速中文模型收斂

在訓練數據方面,項目盡可能全面的收集了各類中文語料和指令數據。無監督訓練使用了上億條高質量的公開中文數據,包括新聞、百科、文學、科學文獻等類型。和通常的無監督預訓練不同,項目在訓練初期加入了大量中英文平行語料,幫助模型將英文能力快速遷移到中文上。

在指令精調階段,項目匯總了開源社區的指令數據資源,包括多輪對話、多語言指令、GPT4/ChatGPT 問答、思維鏈數據等等,經過篩選后使用 500 萬條數據進行指令精調得到 Linly-ChatFlow 模型。訓練使用的數據集也在項目里提供。

訓練流程如圖所示:

0cc77404-e89f-11ed-ab56-dac502259ad0.png

2. 全參數訓練,覆蓋多個模型量級

目前基于 LLaMA 的中文模型通常使用 LoRA 方法進行訓練,LoRA 凍結預訓練的模型參數,通過往模型中加入額外的網絡層,并只訓練這些新增的網絡層參數,來實現快速適配。雖然 LoRA 能夠提升訓練速度且降低設備要求,但性能上限低于全參數訓練。為了使模型獲得盡可能強的中文語言能力,該項目對所有參數量級都采用全參數訓練,開銷大約是 LoRA 的 3-5 倍。

伶荔語言模型利用 TencentPretrain 多模態預訓練框架,集成 DeepSpeed ZeRO3 以 FP16 流水線并行訓練。目前已開放 7B、13B、33B 模型權重,65B 模型正在訓練中。模型仍在持續迭代,將定期更新,損失收斂情況如圖所示:

0cd69cea-e89f-11ed-ab56-dac502259ad0.png

3. 可支持本地 CPU int4 推理、消費級 GPU 推理

大模型通常具有數百億參數量,提高了使用門檻。為了讓更多用戶使用 Linly-ChatFlow 模型,開發團隊在項目中集成了高可用模型量化推理方案,支持 int4 量化 CPU 推理可以在手機或者筆記本電腦上使用,int8 量化使用 CUDA 加速可以在消費級 GPU 推理 13B 模型。此外,項目中還集成了微服務部署,用戶能夠一鍵將模型部署成服務,方便二次開發。

未來工作

據透露,伶荔說系列模型目前仍處于欠擬合,正在持續訓練中,未來 33B 和 65B 的版本或將帶來更驚艷的性能。在另一方面,項目團隊不僅公開了對話模型,還公開了中文基礎模型和相應的訓練代碼與數據集,向社區提供了一套可復現的對話模型方案,目前也有團隊基于其工作實現了金融、醫學等領域的垂直領域對話模型。

在之后的工作,項目團隊將繼續對伶荔說系列模型進行改進,包括嘗試人類反饋的強化學習(RLHF)、適用于中文的字詞結合 tokenizer、更高效的 GPU int3/int4 量化推理方法等等。伶荔項目還將針對虛擬人、醫療以及智能體場景陸續推出伶荔系列大模型。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    11031

    瀏覽量

    215938
  • 人工智能
    +關注

    關注

    1804

    文章

    48677

    瀏覽量

    246317
  • 開源
    +關注

    關注

    3

    文章

    3582

    瀏覽量

    43452
  • 語言模型
    +關注

    關注

    0

    文章

    558

    瀏覽量

    10663

原文標題:“伶荔”(Linly) 開源大規模中文語言模型

文章出處:【微信號:OSC開源社區,微信公眾號:OSC開源社區】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    探索在Arm平臺運行的Llama 4 Scout模型

    人工智能 (AI) 正在加速發展,也越來越智能化。當今的開源語言模型不僅功能強大,而且在設計時充分考慮了實際部署的需求,因而具有輕量化和經濟高效的特點,可大規模部署到數十億臺設備上。
    的頭像 發表于 05-20 09:54 ?139次閱讀

    引領少兒 AI 編程教育革新!英教育率先接入 DeepSeek

    2 月 8 日,英教育旗下核心產品 英 AI 應用平臺 正式接入全球頂尖 AI 大模型 DeepSeek 。通過整合 DeepSeek 的認知決策能力和英多年積累的教育經驗,將為
    的頭像 發表于 02-11 13:16 ?701次閱讀

    語言模型管理的作用

    要充分發揮語言模型的潛力,有效的語言模型管理非常重要。以下,是對語言模型管理作用的分析,由AI部
    的頭像 發表于 01-02 11:06 ?317次閱讀

    【「大模型啟示錄」閱讀體驗】+開啟智能時代的新鑰匙

    那些擁有數十億甚至數千億參數的大規模模型成為了現實可能。Transformer 等機制模型架構的橫空出世,徹底改變了模型訓練的效率和性能。 我有時在想國外為何能夠在大
    發表于 12-24 13:10

    語言模型開發框架是什么

    語言模型開發框架是指用于訓練、推理和部署大型語言模型的軟件工具和庫。下面,AI部落小編為您介紹大語言
    的頭像 發表于 12-06 10:28 ?451次閱讀

    語言模型開發語言是什么

    在人工智能領域,大語言模型(Large Language Models, LLMs)背后,離不開高效的開發語言和工具的支持。下面,AI部落小編為您介紹大語言
    的頭像 發表于 12-04 11:44 ?580次閱讀

    騰訊發布開源MoE大語言模型Hunyuan-Large

    近日,騰訊公司宣布成功推出業界領先的開源MoE(Mixture of Experts,專家混合)大語言模型——Hunyuan-Large。這款模型不僅在參數量上刷新了業界紀錄,更在效果
    的頭像 發表于 11-06 10:57 ?638次閱讀

    搭建開源語言模型服務的方法

    本文我們將總結5種搭建開源語言模型服務的方法,每種都附帶詳細的操作步驟,以及各自的優缺點。
    的頭像 發表于 10-29 09:17 ?621次閱讀

    NVIDIA NIM助力企業高效部署生成式AI模型

    Canonical、Nutanix 和 Red Hat 等廠商的開源 Kubernetes 平臺集成了 NVIDIA NIM,將允許用戶通過 API 調用來大規模地部署大語言模型
    的頭像 發表于 10-10 09:49 ?670次閱讀

    開放原子開源大賽助力輕量級大語言模型應用落地

    “Intel借助開源大賽在全國的影響力,吸引更多開發者加入大語言模型及其在人工智能領域的創新應用。”負責BigDL-LLM賽題運營的Intel工作人員表示。
    的頭像 發表于 09-24 10:38 ?895次閱讀

    【《大語言模型應用指南》閱讀體驗】+ 基礎篇

    學習方法。其中文本向量化中的三種編碼方式:獨熱編碼、靜態編碼和動態編碼,這些概念描述是需要時間仔細研究理解的。 1.5章節終于開始講解大語言模型了,這也是基礎篇的最后一章節,占據了基礎篇的一半篇幅
    發表于 07-25 14:33

    英偉達開源Nemotron-4 340B系列模型,助力大型語言模型訓練

    近日,英偉達宣布開源了一款名為Nemotron-4 340B的大型模型,這一壯舉為開發者們打開了通往高性能大型語言模型(LLM)訓練的新天地。該系列
    的頭像 發表于 06-17 14:53 ?826次閱讀

    大規模語言模型:從理論到實踐】- 閱讀體驗

    和抗噪聲能力;以及通過可視化工具來增強模型的解釋性等。同時,隨著技術的不斷進步和發展,在未來能夠發展出更加高效、健壯和可解釋的大語言模型
    發表于 06-07 14:44

    語言模型(LLM)快速理解

    自2022年,ChatGPT發布之后,大語言模型(LargeLanguageModel),簡稱LLM掀起了一波狂潮。作為學習理解LLM的開始,先來整體理解一下大語言模型。一、發展歷史大
    的頭像 發表于 06-04 08:27 ?1654次閱讀
    大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>(LLM)快速理解

    LLM之外的性價比之選,小語言模型

    。然而在一些對實時性要求較高的應用中,比如AI客服、實時數據分析等,大語言模型并沒有太大的優勢。 ? 在動輒萬億參數的LLM下,硬件需求已經遭受了不小的挑戰。所以面對一些相對簡單的任務,規模較小的小
    的頭像 發表于 06-03 05:15 ?2643次閱讀
    LLM之外的性價比之選,小<b class='flag-5'>語言</b><b class='flag-5'>模型</b>